The Islamic Institution for **Education & Teaching Al-Mahdi Schools**

Mathematics Department Scholastic Year: 2017-2018 **Date:** / 02 / 2018 **Duration**: 150 minutes

Name:

Class: Grade 10

Mid-Year Exam

Mark: 25 points ملاحظة: يسمح باستخدام آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات.

يستطيع التلميذ الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I- (3 points)

In the table below, only one of the proposed answers is correct.

Write the number of each question and give, with justification, its correct answer.

Nº	Questions	Proposed Answers		
		Α	В	С
1)	Let $x < 5$. If $E = \left \frac{4x}{x-5} - 4 \right $, then $E =$	$\frac{20}{5-x}$	$\frac{20}{x-5}$	$\frac{20}{x+5}$
2)	The principal measure of $\frac{17\pi}{3}$ is	$\frac{\pi}{3}$	$-\frac{\pi}{3}$	$\frac{2\pi}{3}$
3)	Let $A = [-2; 6]$ and $B =]0; +\infty[.$ $A \cap \overline{B} =$	[-2;0]]–∞;6]]0;6]
4)	Given the two vectors $\vec{U}(2a; 6)$ and $\vec{V}(1; 3)$, where a is a real number. If \vec{U} and \vec{V} are collinear, then a =	1	$\frac{1}{2}$	-1

II- (4 points)

Remark: The two parts of this question are independent.

Part A (Show all the steps of calculations) Given the following numbers.

$$A = \left[(81)^{-\frac{1}{4}} \times 18^{0.5} + (5.6)^{0} \right] \times \left[1 - \frac{2}{\sqrt{2}} \right] ; B = \frac{12 - 4\sqrt{3}}{\sqrt{3} - 1} ; C = \frac{\sqrt{3} \times \sqrt[3]{12} \times \sqrt[4]{8}}{\frac{12}{\sqrt{3^8} \times 2^{\frac{5}{12}} \times \sqrt[9]{3^{-3}}}}$$

- 1) Prove that A is an integer.
- 2) Rationalize the denominator of B.
- 3) Show that $\frac{B}{C}$ is a natural number.

Part B

Solve, in \mathbb{R} .

1) $|x^2 - 3| = x^2 + 1$ 2) $\frac{(x-1)(4-2x)}{4x^2-36} \ge 0$

III- (4 points)

In an orthonormal system (O; \vec{i} , \vec{j}), consider the three points A(1; -2), B(3; -4), and C(2; 3) and the two vectors $\vec{v} = -2\vec{i} + 3\vec{j}$ and $\overrightarrow{OM} = x\vec{i} + y\vec{j}$, where x and y are two real numbers,

- 1) Find the coordinates of the point D defined by $\overrightarrow{AD} = -2\overrightarrow{BC} + 3\overrightarrow{BD}$.
- 2) Find a relation between x and y so that the three points A, B, and M are collinear.
- 3) Calculate x and y when $\overline{AM} = -2\vec{v}$.
- 4) Calculate the coordinates of point G, the center of gravity of triangle ABC.
- 5) Calculate the coordinates of point A in the system (B; \vec{i} , \vec{j}).

IV- (4 points)

Given the polynomial $P(x) = ax^2 + bx - 6$, where a and b are two real numbers.

1)

- **a**) Find a relation between a and b if x = 2 is a root of P(x).
- **b**) Find a relation between a and b if the remainder of the division of P(x) by (x 3) is 6.
- c) Deduce a and b, and then P(x).

In what follows, suppose that a = b = 1.

- 2) Use the Euclidian division to show that P(x) = (x + 3)(x 2).
- **3**) Solve, in \mathbb{R} , the inequality P(x) > 0.
- 4) In the adjacent figure, BCDE is a square, ABC and ACH are two right-angled triangles at A and C respectively such that AB = 1 − x, AC = 2, and CH = 10 − 2x, where x < 1.
 - a) Let S_1 , S_2 , and S_3 be the respective areas of BCDE, ABC, and ACH. Show that $S_1 - (S_2 + S_3) = P(x)$.
 - **b**) For what values of x do we have $S_1 > S_2 + S_3$?

Part A

Given: A = sin α .cos α (1 + cot² α), where α is an arc such that $-\frac{\pi}{2} < \alpha < 0$.

- **1**) Simplify A.
- 2) Suppose that $\tan \alpha = -\frac{1}{2}$
 - a) Calculate $\cos\alpha$.

b) Deduce the value of
$$E = sin\left(\frac{5\pi}{2} - \alpha\right) \times cos(-7\pi + \alpha)$$
.

Part B

- 1) Show that $\frac{\cos\beta}{1-\cos^2\beta} \frac{1}{1-\cos\beta} = \frac{-1}{\sin^2\beta}$.
- 2) Let $u = \sin\theta \cos\theta$ and $v = \sin\theta + \cos\theta$. Prove that $u^2 + v^2 = 2$.

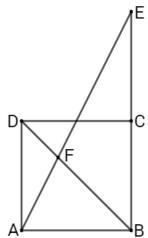
VI- (5 points)

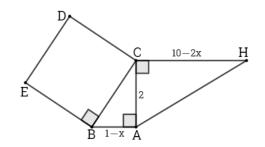
Part A

In the adjacent figure, ABCD is a square of side 6 cm, E is the symmetric of B with respect to C, and F is a point such that $2\overrightarrow{DF} - \overrightarrow{FB} = \overrightarrow{0}$.

- 1) Prove that $\overrightarrow{\text{DF}} = \frac{1}{3}\overrightarrow{\text{DB}}$.
- 2) Show that $\overrightarrow{AF} = \frac{1}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AD}$ and that $\overrightarrow{AE} = \overrightarrow{AB} + 2\overrightarrow{AD}$.
- 3) Deduce that the three points A, F, and E are collinear.

Part B


Let $\vec{V} = \vec{MA} - 3\vec{MC} + \vec{MB} + \vec{MD}$, where M is any point in the plane.


- 1) Show that $\vec{V} = 2\vec{CA}$.
- 2) Deduce the value of $\|\vec{V}\|$.
- 3) Let G be the center of gravity of ABD. Prove that $\vec{V} = 3\vec{CG}$.

Part C

The plane is referred to the orthonormal system (A ; \overrightarrow{AB} , \overrightarrow{AD}).

- 1) Find the coordinates of the three points A, E, and F.
- 2) Prove, again, that the three points A, F, and E are collinear.

