IN HIS NAME

The Islamic Institution for Education & Teaching Al-Mahdi Schools

Mathematics Department Scholastic Year: 2019-2020

Date: January 2020

Class: Grade 10 Duration: 150 minutes

Name: _____ Mid-Year Exam Mark: 30 points

ملاحظة: يسمح باستخدام آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات.

يستطيع التلميذ الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I- (3.5 points)

In the table below, only one of the proposed answers to each question is correct. Write the number of each question and give, **with justification**, its correct answer.

Nº	Questions	Proposed Answers		
		A	В	C
1)	x is a real number different of zero. If $\frac{1}{9} < \frac{1}{x} < \frac{1}{4}$ then $\sqrt{x} \in$]-∞;2[∪]3;+∞[]2; 3[$\left]\frac{1}{3};\frac{1}{2}\right[$
2)	In an orthonormal system $(0; \vec{1}, \vec{j})$, consider the points A(-1; 7) and B(3; -4). The coordinates of B in the new system (A; $\vec{1}, \vec{j}$) are	(2;-3)	(4;-1)	(4; –11)
3)	x and y are two real numbers such that $x > y$. If $A = (\sqrt{2} - 3)x$ and $B = (\sqrt{2} - 3)y$ then	A > B	A < B	A = B
4)	If $(2x + 5)^3 = -27$ then $x =$	1	-4	- 1

II- (4 points)

The two parts in this question are independent.

Part A

Given A =
$$\frac{4^3 \times 7^{-2} \times 35}{49^{-1} \times 56 \times 2^3}$$
 and B = $5\sqrt[3]{54} + 3\sqrt[3]{-16} - \sqrt[3]{128}$.

- 1) Show that A = 5.
- 2) Verify that $B = A\sqrt[3]{m}$ where m is an integer to be determined.

Part B

Solve, in \mathbb{R} , the following system of inequations $\begin{cases} (3-x)^2 \leq 4 \\ \frac{(x^2+9)(x-5)}{x-1} \geq 0 \end{cases}.$

III- (4 points)

Consider the following sets:

$$E = \{ x \in \mathbb{R} / -10 \le x \le 10 \}$$

$$C = \{x \in \mathbb{R} \mid x \in E \text{ and } 2x - 8 \ge 4\}$$

$$D = \{x \in \mathbb{R} \mid x \in E \text{ and } (x - 10)^4 = 81\}.$$

- 1) a) Write E in the form of an interval and verify that C = [6; 10].
 - **b**) Give a representation, on an axis, of the intervals obtained.
- 2) Show that D is a singleton set.
- **3)** Determine an interval X so that $X \cap E = C$.
- 4) \overline{E} and \overline{C} are the respective complements of E and C in \mathbb{R} . Determine an interval Y so that Y $\cup \overline{E} = \overline{C}$.

IV- (5 points)

Consider the following expressions: $E = \left| 3\sqrt{2} - 4 \right| - 3\left| 1 - \sqrt{2} \right|$, $A = \frac{2x-1}{x+3}$ and $B = \left| -x^2 + 4 \right|$ where x is a real number such that 2 < x < 5.

- 1) Show, by bounding, that $\frac{3}{8} < A < \frac{9}{5}$ and $-21 < -x^2 + 4 < 0$.
- 2) Write B without the absolute value.
- 3) Show that E = -1.
- 4) Solve the following equations:
 - a) |A| = |E|.
 - **b**) 3B = E 14.

V- (3.5 points)

Given the polynomial $P(x) = (m-1)x^3 + (2m-1)x^2 - (m+1)x - 3$ where m is a real parameter.

- 1) Determine the value of m if (x 1) is a factor of P(x).
- 2) In this part consider that m = 3 and $P(x) = 2x^3 + 5x^2 4x 3$.
 - a) Write P(x) in the form of $(x-1)(ax^2+bx+c)$ where a, b and c are real numbers to be determined.
 - **b)** Write P(x) in the form of the product of three factors of first degree.

VI- (10 points)

In the adjacent figure, we have:

- ABCD is a rectangle of center O
- AB = 6 cm and AD = 3 cm.

E and F are two points defined by:

$$3\overrightarrow{EB} - \overrightarrow{EA} = \overrightarrow{0}$$
 and $\overrightarrow{CF} + 2\overrightarrow{BF} = \overrightarrow{0}$.

- 1) Show that $\overrightarrow{AE} = \frac{3}{2}\overrightarrow{AB}$ and $\overrightarrow{CF} = \frac{2}{3}\overrightarrow{CB}$.
- 2) Reproduce the figure and place the points E and F.
- 3) Show that $\overrightarrow{DE} = \frac{3}{2}\overrightarrow{AB} \overrightarrow{AD}$ and $\overrightarrow{DF} = \overrightarrow{AB} \frac{2}{3}\overrightarrow{AD}$.
- **4)** Deduce that *D*, *E* and *F* are collinear.
- 5) Let *I* be a point defined by: $3\overrightarrow{IB} \overrightarrow{IA} + 2\overrightarrow{IC} = \overrightarrow{0}$. Show that *I* is the midpoint of [*CE*].

Part B

Consider the system (A; $\frac{1}{2}\overrightarrow{AB}$, \overrightarrow{AD}).

- 1) Find the coordinates of points B, C, D, O, E and F.
- 2) Let L be the symmetric of C with respect to E. Verify that the coordinates of L are (4; -1).
- 3) Show that O, B and L are collinear.
- **4)** Show that *B* is the center of gravity of triangle *CAL*.
- 5) Let M(x; y) where x and y are two real numbers. Find the coordinates of M such that ACLM is a parallelogram.

