IN HIS NAME

The Islamic Institution for Education \& Teaching

Al-Mahdi Schools
Class: Grade 10
Name:

Mathematics Department

Scholastic Year: 2019-2020
Date: January 2020
Duration: 150 minutes
Mark: 30 points

يستطيع التلميذ الإجابة بالترتيب الذي يناسبه (دون الالتز ام بترتيب المسائل الواردة في المسابقة).

I- (3.5 points)

In the table below, only one of the proposed answers to each question is correct. Write the number of each question and give, with justification, its correct answer.

$\mathbf{N}^{\mathbf{0}}$	Questions	Proposed Answers		
		A	B	C
1)	x is a real number different of zero. If $\frac{1}{9}<\frac{1}{x}<\frac{1}{4}$ then $\sqrt{x} \in$	$\begin{gathered}]-\infty ; 2[\cup \\] 3 ;+\infty[\end{gathered}$]2; 3[] $\frac{1}{3} ; \frac{1}{2}[$
2)	In an orthonormal system ($0 ; \overrightarrow{1}, \vec{\jmath}$), consider the points $\mathrm{A}(-1 ; 7)$ and $\mathrm{B}(3 ;-4)$. The coordinates of B in the new system (A; \vec{i}, \vec{j}) are	$(2 ;-3)$	$(4 ;-1)$	$(4 ;-11)$
3)	x and y are two real numbers such that $\mathrm{x}>\mathrm{y}$. If $A=(\sqrt{2}-3) x$ and $B=(\sqrt{2}-3) y$ then	A $>$ B	A $<$ B	$\mathrm{A}=\mathrm{B}$
4)	If $(2 \mathrm{x}+5)^{3}=-27$ then $x=$	1	-4	-1

II- (4 points)

The two parts in this question are independent.

Part A

Given $A=\frac{4^{3} \times 7^{-2} \times 35}{49^{-1} \times 56 \times 2^{3}}$ and $B=5 \sqrt[3]{54}+3 \sqrt[3]{-16}-\sqrt[3]{128}$.

1) Show that $A=5$.
2) Verify that $B=A \sqrt[3]{m}$ where m is an integer to be determined.

Part B

Solve, in \mathbb{R}, the following system of inequations $\left\{\begin{array}{l}(3-x)^{2} \leq 4 \\ \frac{\left(x^{2}+9\right)(x-5)}{x-1} \geq 0\end{array}\right.$.

III- (4 points)

Consider the following sets:
$\mathrm{E}=\{x \in \mathbb{R} /-10 \leq x \leq 10\}$
$\mathrm{C}=\{x \in \mathbb{R} / x \in \mathrm{E}$ and $2 x-8 \geq 4\}$
$\mathrm{D}=\left\{x \in \mathbb{R} / x \in \mathrm{E}\right.$ and $\left.(x-10)^{4}=81\right\}$.

1) a) Write E in the form of an interval and verify that $C=[6 ; 10]$.
b) Give a representation, on an axis, of the intervals obtained.
2) Show that D is a singleton set.
3) Determine an interval X so that $X \cap E=C$.
4) \bar{E} and \bar{C} are the respective complements of E and C in \mathbb{R}.

Determine an interval Y so that $\mathrm{Y} \cup \overline{\mathrm{E}}=\overline{\mathrm{C}}$.

IV- (5 points)

Consider the following expressions: $\mathrm{E}=|3 \sqrt{2}-4|-3|1-\sqrt{2}|, \mathrm{A}=\frac{2 x-1}{x+3}$ and $\mathrm{B}=\left|-x^{2}+4\right|$ where x is a real number such that $2<x<5$.

1) Show, by bounding, that $\frac{3}{8}<\mathrm{A}<\frac{9}{5}$ and $-21<-x^{2}+4<0$.
2) Write B without the absolute value.
3) Show that $E=-1$.
4) Solve the following equations:
a) $|A|=|E|$.
b) $3 \mathrm{~B}=\mathrm{E}-14$.

V- (3.5 points)

Given the polynomial $\mathrm{P}(\mathrm{x})=(\mathrm{m}-1) x^{3}+(2 \mathrm{~m}-1) x^{2}-(\mathrm{m}+1) x-3$ where m is a real parameter.

1) Determine the value of m if $(x-1)$ is a factor of $P(x)$.
2) In this part consider that $\mathrm{m}=3$ and $\mathrm{P}(x)=2 x^{3}+5 x^{2}-4 x-3$.
a) Write $\mathrm{P}(x)$ in the form of $(x-1)\left(\mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}\right)$ where a, b and c are real numbers to be determined.
b) Write $\mathrm{P}(x)$ in the form of the product of three factors of first degree.

VI- (10 points)

In the adjacent figure, we have:

- $A B C D$ is a rectangle of center O
- $A B=6 \mathrm{~cm}$ and $A D=3 \mathrm{~cm}$.

E and F are two points defined by:
$3 \overrightarrow{E B}-\overrightarrow{E A}=\overrightarrow{0}$ and $\overrightarrow{C F}+2 \overrightarrow{B F}=\overrightarrow{0}$.

Part A

1) Show that $\overrightarrow{A E}=\frac{3}{2} \overrightarrow{A B}$ and $\overrightarrow{C F}=\frac{2}{3} \overrightarrow{C B}$.
2) Reproduce the figure and place the points E and F.
3) Show that $\overrightarrow{D E}=\frac{3}{2} \overrightarrow{A B}-\overrightarrow{A D}$ and $\overrightarrow{D F}=\overrightarrow{A B}-\frac{2}{3} \overrightarrow{A D}$.
4) Deduce that D, E and F are collinear.
5) Let I be a point defined by: $3 \overrightarrow{I B}-\overrightarrow{I A}+2 \overrightarrow{I C}=\overrightarrow{0}$.

Show that I is the midpoint of $[C E]$.

Part B

Consider the system ($\mathrm{A} ; \frac{1}{2} \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AD}}$).

1) Find the coordinates of points B, C, D, O, E and F.
2) Let L be the symmetric of C with respect to E.

Verify that the coordinates of L are $(4 ;-1)$.
3) Show that O, B and L are collinear.
4) Show that B is the center of gravity of triangle $C A L$.
5) Let $M(x ; y)$ where x and y are two real numbers.

Find the coordinates of M such that $A C L M$ is a parallelogram.

