AlMandi HFigh Schools	Mathematics	$10^{\text {th_-Grade }}$
$\mathcal{N a m e :}$.	"Intervals"	S.S-1.1

A- IInterbals: If $a \& b$ are any two real numbers such that, $a<b$ then every set of numbers x may have the following different representations:

Representations of a set of real numbers x				Illustration of x
Inequality	\mathcal{N} umber Cine form	Interval form		
form		32otation	\%ame	
$a \leq x \leq b$		[a;b]	Closed interval	x can take any value between $a \& b$ including $a \& b$
$a<x<b$	Solution]a;b[Open interval	x can take
$a \leq x<b$			Semi open	x can take any value between $a \& b$ except b
$a<x \leq b$] $a ; b$]	Semi open interval at a	x can take
$x \leq a$		$]-\infty ; a]$		x can take any value less than or equal to a
$x<a$				x can take
$x \geq b$	$\overrightarrow{x^{\prime}} \backslash, \quad, \quad \longrightarrow$	$[b ;+\infty[$		x can take any value greater than or equal to b
$x>b$	$\overrightarrow{x^{\prime}} \xrightarrow{+}$	$] b ;+\infty[$	x can take

$\mathcal{B}-C_{e n t e r}$ and amplituoe of an interbal:

If I is an interval of closed bounds a and b where $a<b$,

- We call the center of I the number: $c=\frac{b+a}{2}$
- We call the length or amplitude of I, the positive number: $(b-a)$.
- The half - length of I or the radius of I is the positive number: $r=\frac{b-a}{2}$.

Every interval of the form $[c-r, c+r]$, is called a centered interval.

Note that:
a) $\mathfrak{R}=]-\infty ;+\infty[$ is a centered interval. Its center is any real number.
b) The interval $]-\infty ; a[\cup] a ;+\infty[$ admits a as its center.
c) The interval $]-\infty ; a[\cup] a ; b[\cup] b ;+\infty\left[\right.$ admits a center: $\frac{a+b}{2}$

