

2- Determine the distances between the given points and origin.
3- Denote by $\left|x_{A}\right| \&\left|x_{B}\right|$ (read absolute values of $x_{A} \& x_{B}$) the distances $O A \& O B$ respectively then Compare:
a. Abscissas of the points $\boldsymbol{A} \& \boldsymbol{B}$.
b. Distances of the points $\boldsymbol{A} \& \boldsymbol{B}$ from the origin \boldsymbol{O}.

4- What do you conclude?
\qquad

5- What does $\left|x_{D}\right|$ mean?
6- Compare: $\left|x_{D}\right| \& x_{D}$.
7- What do you conclude?

B- Irefinition and Terminologn of Ghsolute halue:

i- Geometric definition of $|x|$:

We define the absolute value of a number as the distance of a number from zero.

ii- Algebraic definition of $|x|$:

$$
|x|=\left\{\begin{array} { l l }
{ x } & { \text { if } x > 0 } \\
{ - x } & { \text { if } x < 0 } \\
{ 0 } & { \text { if } x = 0 }
\end{array} \quad \text { Meaning the answer is } \left\{\begin{array}{l}
\text { xitself if } x \text { is positive } \\
\text { opposite of xif xis negative } \\
\text { zeroif xis zero. }
\end{array}\right.\right.
$$

$E x_{1}:$ Write the following without absolute value sign :
a) $|2|=$
b) $|-3|=$
c) $|\sqrt{5}-2|=\ldots$.
d) $|\sqrt{2}-3|=\ldots$

Again, let us consider the following number line

As you noticed from the above axis that the distance: $O A=3$ units, $O C=6$ units \& $O D=5$ units
Whereas the abscissas of: $A(-3), C(+6) \& D(-5)$.

Conclusions:

Fill in the blanks with most suitable words: (never negative, can be negative, how far, where to)
1 - Since $|x-0|$ represents distance of a point of abscissa x from origin and distance is never negative then absolute value is
2- Since distance asks how far then absolute value also asks

ABSOLUTE YALUE ONLY ASKS

How far?

Not in Which direction?

This means that not only $|3|=3$ but, also that $|-3|=3$ remember absolute value measures distance .
Ex_{2} : Consider the points $M, N \& P$ so that $O M=1 \mathrm{~cm}, O N=3 \mathrm{~cm} \& O P=5 \mathrm{~cm}$.
a) What does $O N$ represent?

b) Detect the possible positions of the above points.
c) Find the values of x the abscissa of:
i. $\quad M$ if, $O M=|x|$
ii. P if, $O P=|x|$

It is important to note that the absolute value bars do NOT work in the same way as parentheses do. Ex_{3} : Simplify
$-(-5)=+5$, this is NOT how it works for absolute value:
$-|-5|=-(5) \leftarrow$ First handle inside the absolute value part
$=-5 \leftarrow$ Then workout the parentheses and outside absolute value

No.	Simplify	Your answer
1.	$-2 \times\|2-5\|$	
2.	$-2 \times\|2+3(4-5)\|$	
3.	$2-\|3-5\|^{2}$	

C- Properties of absofute values

Prop.	Algebraically	In words
1.	$\|x\|=\|-x\|$	A number and its opposite in absolute value are equal.
2.	$x \leq\|x\|$	A number is always less than or equal to its absolute value
3.	$\|x\|=\|y\| \Leftrightarrow\left\{\begin{array}{l}x=y \\ \text { or } \\ x=-y\end{array}\right.$	Two numbers in absolute values are equal is means that these numbers are equal or a number is equal to the opposite of the other and vice versa.
4.	$\|x \times y\|=\|x\| \times\|y\|$	The product of two numbers in absolute is equal to the product of their absolutes
5.	$\left\|\frac{x}{y}\right\|=\frac{\|x\|}{\|y\|}$ s.t $\quad y \neq 0$.	The quotient of two numbers in absolute is equal to the quotient of their absolutes so that the denominator is different than zero.
6.	a. $\quad\|x+y\| \leq\|x\|+\|y\|$	Triangular inequalities
	b. $\quad\|x-y\| \leq\|x\|+\|y\|$.	
	c. $\quad\|x+y\| \geq\|x\|-\|y\|$	
7.	$x^{2}=\left\|x^{2}\right\|=\|x\|^{2}$.	A number squared is equal to its square in absolute value is equal to its absolute value squared.
8.	$\sqrt{x^{2}}=\|x\|$	The square root of number is equal to its absolute value.

Discuss the following:
$\left.\begin{array}{|c||c||}\hline \hline \text { Part } & \text { Statement } \\ \hline \hline \text { 1. } & \text { Compare } \\ |2-x| \&|x-2| & \\ \hline 2 . & \text { Solve }|x|=-3\end{array}\right) \quad$ Short solution with justification

Ghsolute balues and imequalities:

If r is any real number that belongs to the set of real numbers \mathbb{R} then we can write:

The absolute values	In interval form as	In double inequality form as
$\|x\| \leq r$	$x \in[-r ;+r]$	$-r \leq x \leq+r$
$\|x\|<r$	$x \in]-r ;+r[$	$-r<x<+r$
$\|x\| \geq r$	$x \in]-\infty ;-r] \cup[+r ;+\infty[$	$x \geq+r$ OR $x \leq-r$
$\|x\|>r$	$x \in]-\infty ;-r[\cup]+r ;+\infty[$	$x>+r \quad$ OR $\quad x<-r$
$\|x-a\| \leq r$	$x \in[a-r ; a+r]$	$a-r \leq x \leq a+r$
$\|x-a\| \geq r$	$x \in]-\infty ; a-r] \cup[a+r ;+\infty[$	$x \geq a+r$ OR $x \leq a-r$
$\|x-a\|>r$	$x \in]-\infty ; a-r[\cup] a+r ;+\infty[$	$x>a+r$ OR $x<a-r$

Absolute values	Meaning in words	On number line
$\|x\| \leq r$	The distance between a point $M(x)$ and $O(0)$ is less than or equal r	
$\|x-a\|>r$	The distance between a point $M(x)$ and $N(a)$ is strictly greater than r	
$\|x-a\| \leq r$	The distance between a point $M(x)$ and $N(a)$ is less than or equal r	

$\mathcal{E}-\mathfrak{J m p o r t a n t}$ examples:
$|x| \leq-5$ is impossible for all $x \in \mathbb{R}$
$|x| \geq-3$ is true for all $x \in \mathbb{R}$
$|x| \leq 7$ means $x \in[-7 ;+7]$ or $-7 \leq x \leq+7$.
$x \geq 9$ means $x \in]-\infty ;-9] \cup[+9 ;+\infty[$ or $(x \leq-9 \& x \geq 9)$

