A- Comparing a real number with its square:

How to compare a real number " x " with its square?
Complete the following table:

Steps	If statement	Example	Then compare
1	$x>1$	If $x=3$, so $x^{2}=\ldots .$.	$x^{2} \ldots \ldots x$
2	$x<0$	If $x=-2$, so $x^{2}=\ldots$	$x^{2} \ldots . . x$
3	$0<x<1$	If $x=\frac{1}{5}$, so $x^{2}=\ldots$.	$x^{2} \ldots . . x$

Exercise: Compare the following real numbers with their squares:

1) $\pi-3$:
2) $\sqrt{2}-1$

B- Comparing two real numbers:

To compare two real numbers " $x \& y$ " you have two main ways:

1) By subtraction. $x-y$
2) By comparing their squares. $x^{2} \& y^{2}$
3) By squaring then subtracting the given real numbers or vice versa.

Exercise: Consider the real numbers: $a=\sqrt{5+2 \sqrt{5}}$ and $b=\sqrt{5-2 \sqrt{5}}$.

1) Compare $a \& \mathrm{~b}$.
\qquad
\qquad
2) Deduce the sign of $a^{2}-b^{2}$.

C- framing real numbers:

To frame a number we can only perform the following operations:

- Multiplication.
- Addition.
- Reciprocal.

all means to encircle a number between two values.
$10^{\text {th }}$ Grade.

Exercise-1: If $1<x<3$, then frame:

1) x^{2}
2) $2 x+1$
3) \sqrt{x}
4) $\frac{1}{x}$
5) $\sqrt{x}-2$
6) $\frac{\sqrt{x}-2}{x}$

Take any number a and then complete the following table:

Condition		$a>1$	$0<a<1$
Choose a value for a			
	Reciprocal		
	Square		
	Square root		
Compare the above numbers			

Conclusions:

$$
\text { If } a>1 \text { then } \frac{1}{a}<1<\sqrt{a}<a<a^{2} .
$$

$$
\text { If } 0<a<1 \text { then } a^{2}<a<\sqrt{a}<1<\frac{1}{a}
$$

Go Perform the following questions on your copy book:
Exercise-2: In each case, give a framing of: $x+y, x-y \& 2 x-3 y$
a. $2 \leq x \leq 5 \quad \& \quad 4 \leq y \leq 8$.
b. $-5 \leq x \leq-2$ \& $\quad 4 \leq y \leq 8$.
c. $-3<x<-1 \quad \& \quad-5<y<-2$.

Exercise-3: Given that: $-1 \leq x \leq 3 \quad \& \quad 0<y<1$.
Encircle $x-y$ and $y-x$.
Def
The framing of the product of $x y$ is obtained by multiplying side by side the two inequalities, this is true of all terms are positive, if not then determine the +ve framing.
Exercise-4: Frame $x y \& \frac{x}{y}$ in each of the following cases:
a. $2 \leq x \leq 5 \quad \& \quad 4 \leq y \leq 8$.
b. $-5 \leq x \leq-2$ \& $4 \leq y \leq 8$.
c. $-3<x<-1$ \& $-5<y<-2$.

Exercise-5: Prove that if $-1<s \leq 2$ and $3<k \leq 4$, then $-4<s k \leq 8$
$10^{\text {th }}$ Grade.
Mathematics - S.S-1.3 "Comparing \&己 Framing of real \mathcal{N} numbers"

Exercise-6: Given that: $1 \leq a \leq 2 \quad \& \quad 2 \leq b \leq 3$.
Enclose $\frac{1}{b}$ then $\frac{a}{b}$.
Exercise-7: Given that: $\frac{2}{3}<r<\frac{3}{2} \quad \& \quad-2<n<-1$.
Bound: 1) -n
2) $-r n$
3) $r n$

Exercise-8: observe the framing of x^{2} in each of the following cases, then complete the conclusion:

No.	Framing of x	Framing of x^{2}
1	$2<x<3$	$4<x^{2}<9$
2	$-4<x<-3$	$9<x^{2}<16$
3	$-2<x<3$	$0<x^{2}<9$
4	$-5<x<3$	$0<x^{2}<25$

Conclusions
If $a \leq x \leq b$ where

1) Both $a \& b$ are +ve , then $\ldots . \leq x^{2} \leq \ldots$
2) Both a \& b are - ve, then $\ldots . \leq x^{2} \leq \ldots$
3) $a \& b$ are of opposite signs and
i) $|a|<b$, then $\ldots \leq x^{2} \leq \ldots$.
ii), then $0 \leq x^{2} \leq a^{2}$

Exercise-9: In the adjacent figure $R N S K$ is a rectangle of dimensions $a \& b$, where I is the midpoint of $[R N], J$ is the midpoint of $[R I]$ and $1<a<2 \& 3<b<4$

1) Bound:
a. The area of $R N S K$
b. The perimeter of $R N S K$
2) Find the radius of each of the given semi-circles in terms of a
3) Prove that the area of the un-shaded circular region is: $\frac{4 \pi}{64} b^{2}$
4) Can the area of this circular region be $\frac{11 \pi}{64}$? Justify.

