Mathematics

Name: Comparing & Framing of real Numbers

A- Comparing a real number with its square:

How to compare a real number "x" with its square? Complete the following table:

Steps	If statement	Example	Then compare
1	<i>x</i> > 1	If $x = 3$, so $x^2 =$	x^{2} x
2	<i>x</i> < 0	If $x = -2$, so $x^2 =$	x^{2} x
3	0 < <i>x</i> < 1	If $x = \frac{1}{5}$, so $x^2 =$	x ² x

ExerCise: Compare the following real numbers with their squares:

- 1) $\pi 3$:
- 2) $\sqrt{2} 1$:

B- Comparing two real numbers:

To compare two real numbers "x & y" you have two main ways:

- 1) By subtraction. x y
- 2) By comparing their squares. $x^2 & y^2$
- 3) By squaring then subtracting the given real numbers or vice versa.

Exercise: Consider the real numbers: $a = \sqrt{5 + 2\sqrt{5}}$ and $b = \sqrt{5 - 2\sqrt{5}}$.

1) Compare *a* & b.

.....

2) Deduce the sign of a^2-b^2 .

•••••

C- Framing real numbers:

To frame a number we can only perform the following operations:

- Multiplication.
- Addition.
- Reciprocal.

Frame Bound Enclose

all means to encircle a number between two values.

10th Grade.

Mathematics – S.S-1.3 "Comparing & Framing of real Numbers"

Page **1** of **3**

ExerCise-1: If 1 < x < 3, then frame:

1) x^2	 4) $\frac{1}{x}$	
2) $2x+1$	 5) $\sqrt{x} - 2$	
3) \sqrt{x}	 6) $\frac{\sqrt{x-2}}{x}$	

Take any number *a* and then complete the following table:

Condition		<i>a</i> > 1	0 <i><a<</i> 1
Choose a value for <i>a</i>			
its	Reciprocal		
L.	Square		
Find	Square root		
Com	Compare the above numbers		

Conclusions:

If
$$a > 1$$
 then $\frac{1}{a} < 1 < \sqrt{a} < a < a^2$.

		7
	If $0 < a < 1$ then $a^2 < a < \sqrt{a} < 1 < \frac{1}{-1}$.	
Ϊ		

Get Perform the following questions on your copy book: ExerCise-2: In each case, give a framing of: x + y, x - y & 2x - 3y

a. $2 \le x \le 5$ & $4 \le y \le 8$.b. $-5 \le x \le -2$ & $4 \le y \le 8$.

c. -3 < x < -1 & -5 < y < -2.

Exercise-3: Given that: $-1 \le x \le 3$ & 0 < y < 1.

Encircle x - y and y - x.

 \mathcal{D} The framing of the product of xy is obtained by multiplying side by side the two inequalities, this is true *iff* all terms are *positive*, if not then determine the +ve framing.

ExerCise-4: Frame $xy & \frac{x}{y}$ in each of the following cases:

a. $2 \le x \le 5$ & $4 \le y \le 8$.b. $-5 \le x \le -2$ & $4 \le y \le 8$.c. -3 < x < -1& -5 < y < -2.

Exercise-5: Prove that if $-1 < s \le 2$ and $3 < k \le 4$, then $-4 < sk \le 8$

10th Grade. Mathematics – S.S-1.3 "Comparing & Framing of real Numbers" Pag

Exercise-6: Given that: $1 \le a \le 2$ & $2 \le b \le 3$. Enclose $\frac{1}{b}$ then $\frac{a}{b}$. Exercise-7: Given that: $\frac{2}{3} < r < \frac{3}{2}$ & -2 < n < -1. Bound: 1) -n2) -rn3) rn

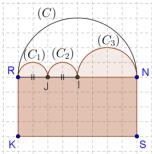
Exercise-8: observe the framing of x^2 in each of the following cases, then complete the conclusion:

	Framing of <i>x</i>	Framing of x^2
1	2 < x < 3	$4 < x^2 < 9$
2	-4 < x < -3	$9 < x^2 < 16$
3	-2 < x < 3	$0 < x^2 < 9$
4	-5 < x < 3	$0 < x^2 < 25$

Ĩ		
		If $a \le x \le b$ where
		1) Both $a \& b$ are +ve, then $\dots \le x^2 \le \dots$
		2) Both <i>a</i> & <i>b</i> are - ve, then $\dots \le x^2 \le \dots$
I	Concrasions	3) <i>a</i> & <i>b</i> are of opposite signs and
		i) $ a < b$, then $ \le x^2 \le$
		ii), then $0 \le x^2 \le a^2$

ExerCise-9: In the adjacent figure *RNSK* is a rectangle of dimensions a & b, where *I* is the midpoint of [*RN*], *J* is the midpoint of [*RI*] and 1 < a < 2 & 3 < b < 4

1) Bound:


a. The area of *RNSK*

b. The perimeter of *RNSK*

2) Find the radius of each of the given semi-circles in terms of a

3) Prove that the area of the un-shaded circular region is: $\frac{4\pi}{64}b^2$

4) Can the area of this circular region be $\frac{11\pi}{64}$? Justify.

