□ (Increasing-Decreasing)

	A function <i>f</i> defined over an interval $I \subset \Re$ is said to be				
	Increasing	Strictly Increasing			
	If for all $x_1 \& x_2 \in I$, s	such that $x_1 < x_2$, then			
	$f(x_1) \leq f(x_2).$	$f(x_1) < f(x_2).$			
	Consider the function $f: y = x^2$.				
a)	Determine the domain of f	$f(x_2)$ $B(x_2; f(x_2))$			
b)	Determine the coordinates of the points A&	<i>B</i> .			
t)	Compare the abscissas of <i>A</i> & <i>B</i>	/.b			
d)	Compare the ordinates of <i>A</i> & <i>B</i>				
e)	What can you say about the variation of C_f ?	$\vec{f}(\mathbf{x}_1) = -\vec{f}(\mathbf{x}_1)$			
f)	What do you conclude?	$x' \stackrel{O}{\stackrel{i}{i}} \stackrel{x_1}{\stackrel{x_2}} x$			
-		\cdots y'			
	A function f defined over an interval $I \subset \Re$ is said to be				
	Decreasing	Strictly Decreasing			
If for all $x_1 \& x_2 \in I$, such that $x_1 < x_2$, then					
	$f(x_1) \ge f(x_2).$	$f(x_1) > f(x_2).$			
	Is the function $f: y = x^2$ decreasing over $[-\infty; 0]$ Is the function $f: y = -x$ decreasing on \Re ? Ju	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $			

Mathematics S.S-10: Sense of variation 10th Grade.

□ Extrema (Maximum- Minimum)

✤ Finding extremum: there are four main ways to find the extremum of a function:

Graphically: 1- Pick up from C_f : a. The highest point: b. The point with the highest ordinate: 2- Find the maximum height of C_f . 3- For what value of x is this maximum height attained? 4- Which point would be suitable to indicate the maximum of Using completing the square: Ex: Consider the expression f(x) = 2x - 1 and the inequality f(x) < 3.

- 1) What does the above inequality till you?
- 2) Solve in set of real numbers: f(x) < 3,

3) What is

		Analytically	Graphically
Absoluto	<i>Maximum</i> of a function <i>f</i>	Is a point on its graph with the <i>highest ordinate</i> .	
Absolute	<i>Minimum</i> of a function <i>f</i>	Is a point on its graph with the <i>lowest ordinate</i> .	
Lecul	<i>Maximum</i> of a function <i>f</i>		
Local	<i>Minimum</i> of a function <i>f</i>		

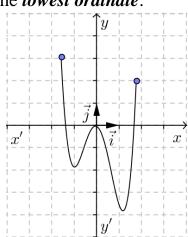
- **Absolute maximum** of a function f: is a point on its graph with the **highest ordinate**.
- Absolute minimum of a function f : is a point on its graph with the lowest ordinate.

Consider the function f defined by y = f(x) & its graph C_f .

1- Find the domain of $f \cdot D_f = \dots \dots \dots$

2- Find the interval (s), for which f is increasing or decreasing.

- f is increasing over the interval:
- f is decreasing over the interval:
- 3- Find the absolute maximum of f.


f has a maximum: $y = \dots$

and it is reached at $x = \dots$

4- Find the absolute minimum of f.

f has a minimum: $y = \dots$ and it is reached at $x = \dots$

5- (x; f(x)) represents the coordinates of any point on the graph of f.

Mathematics S.S-10: Sense of variation 10th Grade.

- a. Calculate the following values: $f(-1) = \dots f(0) = \dots f(0) = \dots f(2) = \dots f(2$
 - $f(x) \ge -3.8$ for all $x \in D_f$, so y = -3.8 is
- 6- Determine the local minimum of f (minimum over a part of the domain) over I = [-1.5;0]. f admits a at y =, & it is reached at x =
- 7- Determine the local maximum of f (maximum over a part of the given domain) over $I_1 = [0;2[$. f admits a local maximum over the interval I_1 at $y = \dots, k$ it is reached at $x = \dots$
- 8- Set-up the table of variation of f, by completing the below table:

x	-1.5	-1	0	1.1	2
f(x)					

Finding extremum: there are three main ways to find extremum of a quadratic function: $f(x) = ax^2 + bx + c$

1-<u>Using completing the square:</u>

Ex: write the quadratic function: $f(x) = x^2 - 4x + 1$ in form of $f(x) = (x - a)^2 + b$ where a & b belong to *R*.

2-<u>Directly use the formula:</u>

The abscissa of the extremum is: $x = -\frac{1}{2}$

The extremum is $f\left(-\frac{b}{2a}\right)$ Ex: if $f(x) = x^2 - 6x + 9$ Then, $a = 1 \\ b = -6$ } so, $x = -\frac{b}{2a} = \frac{6}{2} = 3$ And f(3) = 9 - 18 + 2 = -73-Show that $\frac{1}{8}$ is a maximum for $f: x \longrightarrow \frac{x-2}{x^2}$ Soln: $f(x) - \frac{1}{8} = \frac{x-2}{x^2} - \frac{1}{8} = -\frac{(x-4)^2}{8x^2} \le 0$ Then $f(x) - \frac{1}{8} \le 0$ Thus, $f(x) \le \frac{1}{8}$ which means that $\frac{1}{8}$ is a maximum for f