AlMahdiHigh Schools Mathematics
 Name: "Sketching by Translation \&Z Symmetry"

Sketching graphs by Translation

Functions	Relation between $f(x) \& g(x)$	Translation vector $\vec{s}(x ; y)$	SKetching C_{g} using C_{f} by translation
1) $f(x)=x^{2}$		$g_{k}(x)$ is the translate	$\text { fo } \quad c_{f}$
$g_{1}(x)=x^{2}+2$	$g_{1}(x)=\ldots \ldots \ldots .$.	of $f(x)$ by:	$=$
$g_{2}(x)=x^{2}-2$	$g_{2}(x)=\ldots \ldots \ldots$		
$g_{3}(x)=(x-1)^{2}$	$g_{3}(x)=\ldots \ldots \ldots$.		$\langle 7$
$g_{4}(x)=(x+1)^{2}$	$g_{4}(x)=\ldots \ldots \ldots \ldots$		
$g_{5}(x)=(x+1)^{2}-2$	$g_{5}(x)=\ldots \ldots \ldots$		$D_{f}=\ldots \ldots \ldots \ldots$
2) $f(x)=\sqrt{x}$			y
$g_{1}(x)=\sqrt{x}+2$	$g_{1}(x)=\ldots \ldots \ldots .$.		$C_{\text {f }}$
$g_{2}(x)=\sqrt{x}-2$	$g_{2}(x)=\ldots \ldots \ldots$.		!
$g_{3}(x)=\sqrt{x-1}$	$g_{3}(x)=\ldots \ldots \ldots$		Q
$g_{4}(x)=\sqrt{x+1}$	$g_{4}(x)=$		\vec{i}
$g_{5}(x)=\sqrt{x+1}-2$	$g_{5}(x)=\ldots \ldots$		$D_{f} \pm \ldots$
3) $f(x)=\frac{1}{x}$			
$g_{1}(x)=\frac{1}{x}+2$	$g_{1}(x)=\ldots \ldots \ldots .$.		
$g_{2}(x)=\frac{1}{x}-2$	$g_{2}(x)=$		\approx
$g_{3}(x)=\frac{1}{x-1}$	$g_{3}(x)=\ldots \ldots \ldots$.		$\xrightarrow{\text { ¢ }}$
$g_{4}(x)=\frac{1}{x+1}$	$g_{4}(x)=\ldots \ldots \ldots$.		
$g_{5}(x)=\frac{1}{x+1}-1$	$g_{5}(x)=\ldots \ldots \ldots \ldots$		$D_{f}=$

Sketching of basic functions by $\mathbb{C r a n s l a t i o n}$

4- Parabola:

The graph of $g: g(x)=(x-h)^{2}+k$, is similar to that of the basic function,
$f: f(x)=x^{2}$ Shifted:

Horizontally \boldsymbol{h} units to the		Vertically \boldsymbol{k} units	
Right	If, $\ldots .$.	Upwards	If, $\ldots \ldots$.
Left	If, $\ldots .$.	Downwards	If, $\ldots \ldots$.

\mathcal{N} ote that:

- The equation of translation is:

$$
g(x)=f(x-h)+k
$$

- The translation vector is: \qquad
- The new axis of symmetry is: \qquad
- The \qquad is $V(h, k)$

\mathcal{B} - Absolute value function:

The graph of $g: g(x)=|x-h|+k$ is similar to that of the basic function:
$f: f(x)=|x|$ Shifted:

Horizontally \boldsymbol{h} units to the		Vertically \boldsymbol{k} units	
Right	If, $\ldots \ldots$.	Upwards	If, $\ldots \ldots$.
Left	If, $\ldots \ldots$	Downwards	If, $\ldots \ldots$.

\mathcal{N} ote that:

- The equation of translation is:

$$
g(x)=f(x-h)+k
$$

- The translation vector is $s(h, k)$
- The is $x=h$

- The new vertex is: \qquad

C- Square root function:

The graph of $g: g(x)=\sqrt{x-h}+k$ is similar to that of the basic function,
$f: f(x)=\sqrt{x}$ Shifted:

Horizontally \boldsymbol{h} units to the		Vertically \boldsymbol{k} units	
Right	If, $\ldots \ldots$	Upwards	If, $\ldots \ldots$
Left	If, $\ldots \ldots$	Downwards	If, $\ldots \ldots$

\mathcal{N} ote that:

- The equation of translation is:
- The translation vector is: \qquad
- The \qquad is $x=h$

- The new vertex is:

D- Rational function:

The graph of $g: g(x)=\frac{1}{x-h}+k$ is similar to that of the basic function, $f: f(x)=\frac{1}{x}$ Shifted $:$

Horizontally \boldsymbol{h} units to the		Vertically \boldsymbol{k} units	
Right	If, $\ldots \ldots$	Upwards	If, $\ldots \ldots$
Left	If, $\ldots \ldots$	Downwards	If, $\ldots \ldots$.

Note that: C_{8} admits a

- Translation vector $\vec{v}(\ldots$.
- center of symmetry $C(\ldots$.
- Vertical asymptote of equation \qquad
- Horizontal asymptote of equation
- New vertex V(..........)

- The equation of translation is: \qquad
$>$ Sketching graphs of basic functions by symmetry

