AlMahdi High Schools Mathematics

To graph any absolute valued functions of the form $g(x)=|f(x)|$
follow ine

con

Graph the given function without absolute value, point by point.
To include the absolute value in the graph of the given function:
i) Find the interval for which $f(x)<0$ (that is curve is below x-axis)
ii) Reflect this part with respect to the x-axis (Find symmetry w.r.t x-axis)

Applications:

$\mathbb{E}_{X_{1}}$: Consider the two functions f \& g so that $f(x)=x-1$ and $g(x)=|f(x)|$, graph f then deduce the graph of g.

$\mathbb{E X}_{2}$: Consider the two functions $h \& k$ so that $h(x)=x^{2}-1$ and $k(x)=|h(x)|$, graph h then deduce the graph of k.

Soln: $\quad 1^{\text {st }}-$ Step	Therefore, we can say that	$2^{\text {nd }}-$ Step	
	$\\| k(x)= \begin{cases}h(x) & \text { if } x \in]-\infty ;-1] \cup[1 ; \infty[\\ -h(x) & \text { if }-1 \leq x \leq 1\end{cases}$ Comparing graphs of $h \& k$ we say: a) $C_{h} \& C_{k}$ are confounded if $x \in]-\infty ;-1] \cup[1 ; \infty[$ b) $C_{h} \& C_{k}$ are symmetric w. r.t x-axis $-1 \leq x \leq 1$		

On your own:

Consider the function $f: x \mapsto \frac{1}{x}$
1- Determine domain and parity of f.
\qquad
\qquad
\qquad
\qquad
\qquad
2- Set up the table of variation of f over its domain.

x	
$f(x)$	

3- Graph on the orthonormal system (O, \vec{i}, \vec{j}) the curve of f.

4- On the same system (O, \vec{i}, \vec{j}) deduce the graph of a function $g(x)=|f(x)|$.

5- Write $g(x)$ in terms of $f(x)$.
$g(x)=\left\{\begin{aligned} & \text { for all } x \\ & \text { for all } x\end{aligned}\right.$

6- Deduce domain, and set up the table of variation of g.

x	
$g(x)$	

7- Compare graphs of $f \& g$.
\qquad
\qquad
\qquad

To graph any absolute valued functions of the form $g(x)=f(|x|)$

3 Graph the given function without absolute value point by point.
To include the absolute value in the graph of the given function:
i) Find the interval for which $x>0$
ii) Reflect this part with respect to the y-axis (find symmetry w.r.t y-axis)

Applications:

$\mathfrak{E} x$: Consider the two functions f defined by its curve $C_{f} g(x)=f(|x|)$, deduce the graph of g using C_{f}.

Soln:

Therefore, we can say that

$$
g(x)= \begin{cases}f(x) & \text { for } x \geq 0 \\ f(-x) & \text { for } x \leq 0\end{cases}
$$

Comparing graphs of $f \& g$ we say:
i) $C_{f} \& C_{g}$ are confounded for all $x \geq 0$
ii) $C_{f} \& C_{g}$ are symmetric with respect to y-axis for all $x \leq 0$

Notice that: $g(x)=f(|x|)$ is an even function.

On your own:

Consider the function $r: x \mapsto \sqrt{x-2}$
1 - Determine domain and parity of r.
\qquad
\qquad
\qquad
\qquad
\qquad
2- Set up the table of variation of r over its domain.

x	
$r(x)$	

3- Graph on the orthonormal system (O, \vec{i}, \vec{j}) the curve of r.

4- On the same system (O, \vec{i}, \vec{j}) deduce the graph of a function $n(x)=r(|x|)$.

5- Write $n(x)$ in terms of $r(x)$.

$$
n(x)=\left\{\begin{aligned}
& \text { for all } x \\
& \text { for all } x
\end{aligned}\right.
$$

6- Deduce domain, and set up the table of variation of n

x	
$n(x)$	

7- Compare graphs of $r \& n$.

