Al Mahdi High So	chools Mathematics	10 th -Grade
(Al-Hadath) Name:	"Graphing absolute valued functions"	<i>S.S-13</i>

To graph any absolute valued functions of the form g(x) = |f(x)| follow f(x) = |f(x)|

Graph the given function *without absolute value*, point by point.

To include the absolute value in the graph of the given function:

- *i*) *Find* the interval for which f(x) < 0 (that is curve is below x axis)
- *ii)* <u>*Reflect*</u> this part with respect to the x axis (Find symmetry w.r.t x axis)

Applications:

 $\mathfrak{E}x_1$: Consider the two functions f & g so that f(x) = x - 1 and g(x) = |f(x)|, graph f then deduce the graph of g.

Ex₂: Consider the two functions *h* & *k* so that $h(x) = x^2 - 1$ and k(x) = |h(x)|, graph *h* then deduce the graph of *k*.

On your own:

Consider the function	f	$x \vdash$	\rightarrow	1

1- Determine domain and parity of f.

2- Set up the table of variation of f over its domain.

x	
f(x)	

- 3- Graph on the orthonormal system (O, \vec{i}, \vec{j}) the curve of f.
- 4- On the same system (O, \vec{i}, \vec{j}) deduce the graph of a function g(x) = |f(x)|.
- 5- Write g(x) in terms of f(x). $g(x) = \begin{cases} for all x \\ g(x) = \begin{cases} for all x \\ for all x \end{cases}$
- 6- Deduce domain, and set up the table of variation of g.

for all x

x	
g(x)	

7- Compare graphs of f & g.

.....

To graph any absolute valued functions of the form g(x) = f(|x|) follow (1)

Graph the given function without absolute value point by point.

To include the absolute value in the graph of the given function:

- *i*) Find the interval for which x > 0
- *ii*) Reflect this part with respect to the y axis (find symmetry w.r.t y axis)

<u>Applications</u>:

Ex: Consider the two functions f defined by its curve $C_f g(x) = f(|x|)$, deduce the graph of g using C_f .

10th-Grade.

Mathematics. S.S-13 Graphing Absolute valued Functions.

On your own:

Consider the function $r: x \mapsto \sqrt{x-2}$

1- Determine domain and parity of r.

2- Set up the table of variation of *r* over its domain.

x	
r(x)	

- 3- Graph on the orthonormal system (O, \vec{i}, \vec{j}) the curve of *r*.
- 4- On the same system (O, \vec{i}, \vec{j}) *deduce* the graph of a function n(x) = r(|x|).
- 5- Write n(x) in terms of r(x). $n(x) = \begin{cases} for \ all \ x \end{cases}$

for all x

6- Deduce domain, and set up the table of variation of n

x	
n(x)	

7- Compare graphs of r & n.