Lycée Des Arts

Mathematics

10th-Grade

Name: "Quadratic functions and inequalities "

S.S-14

The complete form of a quadratic function is given by: $h(x) = ax^2 + bx + c$

To solve a quadratic inequality of the form $ax^2 + bx + c < or > 0$

Write the given quadratic inequality in the form $h(x) = (x - h)^2 + k$ "by completing the square"

Graph the function: $h(x) = (x - h)^2 + k$ "carefully".

Specify the x-intercepts of h(x) "by solving $(x-h)^2 + k = 0$ "

Detect • the sign of the inequality:

$$h(x) = ax^2 + bx + c > 0$$

$$h(x) = ax^2 + bx + c < 0$$

Then take values of x for which the graph is

Strictly above the x-axis

Strictly below the x-axis

Solve graphically the following inequality: $h(x) = x^2 - 6x + 5 \ge 0$

1st - Step: Change form: $h(x) = x^2 - 6x + 5 = (x+3)^2 - 4$, which is a parabola of vertex V(-3, -4)

 2^{nd} - Step: Graph h(x)

 3^{rd} – Step: Specify x-intercepts: A(-5;0) and B(-1;0).

 4^{th} - Step: Detect given sign: $h(x) \ge 0$

Thus, $x \in]-\infty;-5] \cup [-1;+\infty[$

