The complete form of a quadratic function is given by: $h(x)=a x^{2}+b x+c$
4) To solve a quadratic inequality of the form $a x^{2}+b x+c<o r>0$

Write the given quadratic inequality in the form $h(x)=(x-h)^{2}+k$ "by completing the square"
Graph the function: $h(x)=(x-h)^{2}+k$ "carefully".
Specify the x-intercepts of $h(x)$ "by solving $(x-h)^{2}+k=0 "$

ES $h(x)=a x^{2}+b x+c>0$	य3 $h(x)=a x^{2}+b x+c<0$
Then take values of x for which the graph is	
Strictly above the x-axis	Strictly below the x-axis

$\therefore \underbrace{4 \pi}$
Solve graphically the following inequality: $h(x)=x^{2}-6 x+5 \geq 0$
$1^{\text {st }}$ - Step: Change form: $h(x)=x^{2}-6 x+5=(x+3)^{2}-4$, which is a parabola of vertex $V(-3 ;-4)$
$2^{\text {nd }}-$ Step: $\operatorname{Graph} h(x)$
$3^{\text {rd }}-$ Step: Specify x-intercepts: $A(-5 ; 0)$ and $B(-1 ; 0)$.
$4^{\text {th }}-$ Step: Detect given sign: $h(x) \geq 0$

Thus, $x \in]-\infty ;-5] \cup[-1 ;+\infty[$

