

\forall **Properties of a vector**:

In elementary mathematics, a *vector* is a geometric object *defined by its properties*:

- a) **Direction:** the line that **holds** \overrightarrow{AB} or every line **parallel** to (AB); **e.g.** vertical, along line (d)...
- b) Sense: orientation from an initial point to a final point; e.g. left to right or from A to B_{\dots}
- c) **Magnitude:** modulus or norm $\|\overrightarrow{AB}\|$ of the given vector is the distance between A & B.

Representation of a vector:

A vector is frequently represented by a *segment with a definite direction*, or graphically as an *arrow*, connecting an *initial point* A with a *terminal point* B, and denoted by \overrightarrow{AB} .

- a) <u>Zero Vector</u>:
 - <u>Def</u>: Is a vector whose origin and extremity are confounded and it is also known as a *null vector*.

<u>Notation</u>: A zero vector is denotedd by: $\vec{0}$ or $\overrightarrow{AA} = \overrightarrow{RR} = \overrightarrow{NN} = \overrightarrow{O}$

- <u>Properties</u>: A zero vector has a zero modullus $\|\vec{0}\|$ and no definite direction.
- *b)* <u>*Unit Vector:*</u> is any vector whose magnitude is equal to the chosen unit (scale).

<u>Eg</u>: In the figure to the right $\vec{i} & \vec{j}$ represent the unit vectors

of x - axis & y - axis respectively, where $\|\vec{i}\| = \|\vec{j}\| = 1$ unit

Relating vectors:

* Equal vectors:

Analytic approach	Geometric approach	Conclusion
Any two vectors \vec{u} and \vec{v} are <i>equal</i> if they have: - Same direction. - Same sense. - Same magnitude.	C T U B D D	Therefore , vectors \vec{u} and \vec{v} are equal. And we write: \vec{v} \vec{v} v
✓ <u>Significance of equal vectors</u> : <i>a.</i> If $\overrightarrow{AB} = \overrightarrow{CD}$, then <i>C</i> is the fourth vertex of the <u>parallelogram</u> ABDC.		

C

Б

<u>Conversely</u>: If ABDC is a parm then, $\overrightarrow{AB} = \overrightarrow{CD}$.

b. If $\overrightarrow{AB} = \overrightarrow{CD}$, then the points A, B, C and D are <u>collinear</u>.

c. If $\overrightarrow{AB} = \overrightarrow{CD}$, then the segments [AD] and [BC] have the <u>same midpoint</u>.

* Opposite Vectors:

Significance of opposite vectors is the same as equal vectors

A Collinear vectors :

Vectors are *collinear* if and only if they have *same direction*: *means* $\begin{cases} held by same st.line \\ held by parallel st.lines. \end{cases}$ *In other words*, two non-zero vectors $\vec{u} & \vec{v}$ are collinear if they satisfy the vector relation:

Relation	Meaning			
	If $k = 1$ then	If $k = -1$ then	If $k > 1$ then	<i>If k</i> <1 <i>then</i>
$\vec{u} = k \vec{v}$	$\vec{u} & \vec{v}$ are equal vectors	$\vec{u} & \vec{v} \text{ are}$ opposite vectors	$\vec{u} & \vec{v}$ have same sense	$\vec{u} & \vec{v}$ have opposite senses
$\ \vec{u}\ = k \ \vec{v}\ $				

Stypes of vectors:

Types of vectors:				
	Free vectors	Vectors of the same origin	Consecutive Vectors	
Definition	Are vector having neither a common origin nor common extremity.	Are vector having a common origin only.	Are vectors having the extremity of the first as the origin of the second.	
Geometric approach	R R		N R R	

Sum of two vectors:

There are two main methods to add two or more vectors having the same *coefficients*:

	1 st – Method	2 nd – Method
	Parallelogram Rule	Chasles' Rule
Used	If vectors have the same origin	If vectors are consecutive
Method	Complete the parallelogram	Join the first origin to the last extremity.
Graphical representation	$\vec{u} = \vec{u} + \vec{v} $ $R = \vec{v} + \vec{v} $ $F = \vec{v} + \vec{v}$	V V V V
Analytical approach	The sum of two vectors with same origin; is a vector with same origin and its extremity is the fourth vertex of the parm. $\vec{RF} + \vec{RK} = \vec{R} \underbrace{\vec{N}}_{4thVertex}$	The sum of two consecutive vectors; is a vector with orgin of 1 st and extremity of the last. $\vec{\underline{AB}} + \vec{\underline{BC}} = \vec{\underline{AC}}.$

Subscription Properties of vector addition:

No.	Analytic approach	Geometric approach
1.	Commutativity: $ \begin{array}{c} \stackrel{\rightarrow}{since}, \stackrel{\rightarrow}{u+v} = \stackrel{\rightarrow}{AC} \\ \stackrel{\rightarrow}{v+u} = \stackrel{\rightarrow}{AC} \\ \end{array} $ $so, u+v = v+u$	$\vec{v} \xrightarrow{v+u}_{v+u} \vec{v}$
2.	Associativity: $ \begin{aligned} Since, & \overrightarrow{u+v} = \overrightarrow{AC} \\ \overrightarrow{AC+w} = \overrightarrow{AD} \end{aligned} $ $ then, & (\overrightarrow{u+v}) + \overrightarrow{w} = \overrightarrow{AD} \\ then, & (\overrightarrow{u+v}) + \overrightarrow{w} = \overrightarrow{AD} \\ then, & (\overrightarrow{v+w}) + \overrightarrow{u} = \overrightarrow{AD} \\ then, & (\overrightarrow{v+w}) + \overrightarrow{u} = \overrightarrow{AD} \\ then, & (\overrightarrow{v+w}) + \overrightarrow{w} = \overrightarrow{u+} (\overrightarrow{v+w}) \end{aligned} $	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $

🗞 <u>Triangular inequality</u>:

In any triangle *ABC* we have:

 $\|\vec{a}\| \leq \|\vec{b}\| + \|\vec{c}\|$ But, $\vec{b} + \vec{c} = \vec{a}$ So, $\|\vec{b} + \vec{c}\| = \|\vec{a}\|$ Thus, $\|\vec{b} + \vec{c}\| \leq \|\vec{b}\| + \|\vec{c}\|$

	How to find the Image or translation of some geometric figures	
Figures	Procedure	Graphical representation
Lines	To translate a line, translate any two points on this line.	C' C' C' C' C' C' C' C'
Segments	To translate a segment, translate its extremities.	$\mathbf{H}_{\mathbf{A}}^{\mathbf{A}} = \mathbf{H}_{\mathbf{A}}^{\mathbf{A}} = \mathbf{H}_{\mathbf$
Triangles	To translate a triangle, translate its vertices	
Circles	To translate a circle, translate its center and keep the same radius	

> Properties of translation:

Scholar States and Vectors :

- $\stackrel{\checkmark}{\Rightarrow}$ Conversely: If $\overrightarrow{AB} + \overrightarrow{AC} = 2\overrightarrow{AN}$ then, [AN] is the median relative [BC].
- \Rightarrow Genrerally: If A is any point in the plane and M is the midpoint of [BC] then we write:

$$\overrightarrow{AB+AC} = 2\overrightarrow{AM}.$$

10th-Grade.

Mathematics. S.S-2 Vectors

& Centroid and Vectors:

If *G* is the center of gravity (*Centroid*) of triangle *ABC* then:

- \Rightarrow <u>Conversely</u>: If $\vec{GA} + \vec{GB} + \vec{GC} = \vec{0}$ then; G is the *center of gravity* of triangle ABC.
- ☆ *Genrerally: If M* is any point of the plane where *G* is the centroid of $\triangle ABC$ then we can write:

 $\vec{MA} + \vec{MB} + \vec{MC} = 3\vec{MG}$ Proof: Since G is the centroid of $\triangle ABC$ then $\vec{GA} + \vec{GB} + \vec{GC} = \vec{0} \text{ (Introduce point } M \text{ .)}$ $\vec{GM} + \vec{MA} + \vec{GM} + \vec{MB} + \vec{GM} + \vec{MC} = \vec{0}$ So, $3\vec{GM} + \vec{MA} + \vec{MB} + \vec{MC} = \vec{0}$ $\vec{MA} + \vec{MB} + \vec{MC} = -3\vec{GM}$ Therefore; $\vec{MA} + \vec{MB} + \vec{MC} = -3\vec{GM}$

10th-Grade.