

A vector \vec{u} or $\overrightarrow{A B}$ is an oriented segment having two extremities, an origin and an end point.

Properties of a vector:

In elementary mathematics, a vector is a geometric object defined by its properties:
a) Direction: the line that holds $\overrightarrow{A B}$ or every line parallel to $(A B)$; egg. vertical, along line $(d) \ldots$
6) Sense: orientation from an initial point to a final point; erg. left to right or from A to $B \ldots$
c) Magnitude: modulus or norm $\|\overrightarrow{A B}\|$ of the given vector is the distance between $A \& B$.

Representation of a vector:

A vector is frequently represented by a segment with a definite direction, or graphically as an arrow, connecting an initial point A with a terminal point B, and denoted by $\overrightarrow{A B}$.

Special forms of Vectors?

a) Zero Vector:

Def: Is a vector whose origin and extremity are confounded and it is also known as a null vector.
Notation: A zero vector is denoted by: $\overrightarrow{0}$ or $\overrightarrow{A A}=\overrightarrow{R R}=\overrightarrow{N N}=\vec{O}$
Properties: A zero vector has a zero modullus $\|\overrightarrow{0}\|$ and no definite direction.
b) Unit Vector: is any vector whose magnitude is equal to the chosen unit (scale).
$\boldsymbol{E g}$: In the figure to the right $\vec{i} \& \vec{j}$ represent the unit vectors of x-axis \& y - axis respectively, where $\|\overrightarrow{i \|}\|=\|\vec{j}\|=1$ unit

Relating vectors:

is Equal vectors:

Analytic approach	Geometric approach	Conclusion
Any two vectors \vec{u} and \vec{v} are equal if they have: - Same direction. - Same sense. - Same magnitude.		Therefore, vectors \vec{u} and \vec{v} are equal

\checkmark Significance of equal vectors:

a. If $\overrightarrow{A B}=\overrightarrow{C D}$, then C is the fourth vertex of the parallelogram $A B D C$.

Conversely: If $A B D C$ is a parm then, $A B=C D$.
b. If $\overrightarrow{A B}=\overrightarrow{C D}$, then the points A, B, C and D are collinear.

c. If $A B=C D$, then the segments $[A D]$ and $[B C]$ have the same midpoint.

\& Opposite Vectors:

Analytic approach	Geometric approach	Conclusion
Any two vectors \vec{u} and \vec{v} are opposite if they have: - Same direction. - Same magnitude. - But opposite senses.		Therefore, \vec{u} and \vec{v} are opposite.

Significanceof opposite vectors is the same as equal vectors

\star Collinear vectors:
Vectors are collinear if and only if they have same direction: means $\left\{\begin{array}{l}\text { held by samest.line }\end{array}\right.$ held by parallel st.lines. In other words, two non-zero vectors $\vec{u} \& \vec{v}$ are collinear if they satisfy the vector relation:

$\left.$| Refation | Meaning | | | |
| :---: | :---: | :---: | :---: | :---: |
| $\vec{u}=k \vec{v}$ | If $k=1$ then | If $k=-1$ then | If $k>1$ then | If $k<1$ then |
| | $\vec{u} \& \vec{v}$ are equal
 vectors | $\vec{u} \& \vec{v}$ are
 opposite vectors | $\vec{u} \& \vec{v}$ have same | |
| sense | | | | |\quad| $\vec{u} \& \vec{v}$ have |
| :---: |
| opposite senses | \right\rvert\,

(4) Types of vectors:

	Free vectors	Vectors of the same origin	Consecutive Vectors	
Definition	Are vector having neither a common origin nor common extremity.	Are vector having a common origin only.	Are vectors having the extremity of the first as the origin of the second.	
Geometric approach	R			

Sum of two vectors:

There are two main methods to add two or more vectors having the same coefficients:

	$1^{\text {st }}$ - Method	$2^{\text {nd }}$ - M Method
	Parallelogram Rule	Chasles' Rule
Used	If vectors have the same origin	If vectors are consecutive
Method	Complete the parallelogram	Join the first origin to the last extremity.
Graphical representation		
Analytical approach	The sum of two vectors with same origin; is a vector with same origin and its extremity is the fourth vertex of the parm. $\overrightarrow{R F}+\vec{R} K=\underline{R} \underbrace{\vec{N}}_{\text {thVertex }}$	The sum of two consecutive vectors; is a vector with orgin of $1^{\text {st }}$ and extremity of the last. $\overrightarrow{\overrightarrow{A B}}+\overrightarrow{B C}=\underline{\underline{A C}} \underline{\underline{C}} .$

4. Properties of vector addition:

\mathcal{N} o.	Analytic approach	Geometric approach
1.	Commutativity: Since, $\left.\begin{array}{r} \vec{u}+\vec{v}=\overrightarrow{A C} \\ \vec{v}+\vec{u}=\overrightarrow{A C} \end{array}\right\} \operatorname{so,~\vec {u}+\vec {v}=\vec {v}+\vec {u}}$	
2.	Associativity: Since, $\left.\begin{array}{c}\vec{u}+\vec{v}=\overrightarrow{A C} \\ \overrightarrow{A C}+\vec{w}=\overrightarrow{A D}\end{array}\right\}$ then, $(\vec{u}+\vec{v})+\vec{w}=\overrightarrow{A D}$ Since Thus, $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$	

4) Triangular inequality:

In any triangle $A B C$ we have:

$$
\|\vec{a}\| \leq \vec{b}\|+\| \vec{c} \|
$$

But, $\vec{b}+\vec{c}=\vec{a}$
So, $\|\vec{b}+\vec{c}\| \neq\|\vec{a}\|$
Thus, $\|\vec{b}+\vec{c}\| \leq\|\vec{b}\|+\|\vec{c}\|$

\mathcal{H} ow to find the Image or translation of some geometric figures

$\stackrel{\rightharpoonup}{4}$ Properties of translation:

Transfation preserves:

\qquad
Collinearity

If \boldsymbol{I} is the midpoint of $[A B]$ then;

	Analytic approach	Graphical representation
1-	$\overrightarrow{A I}=\overrightarrow{I B}$	
2-	$\overrightarrow{I A}+\overrightarrow{I B}=\overrightarrow{0}$	
3-	$\overrightarrow{A B}=2 \overrightarrow{A I}$	
4-	$\overrightarrow{A B}=2 \overrightarrow{I B} .$	

is Conversely:
If $\left\{\begin{array}{l}\overrightarrow{A I}=\overrightarrow{I B} \\ \overrightarrow{I A}+\overrightarrow{I B}=\overrightarrow{0} \\ \overrightarrow{A B}=2 \overrightarrow{A I} \\ \overrightarrow{A B}=2 \overrightarrow{I B}\end{array}\right\}$ then, I is the midpoint of $[\boldsymbol{A B}]$

*) Xedians and Vectors:

If $[A N]$ is a median relative to $[B C]$ then; $\overrightarrow{A B}+\overrightarrow{A C}=2 \overrightarrow{A N}$.

\& Conversely: If $\overrightarrow{A B}+\overrightarrow{A C}=2 \overrightarrow{A N}$ then, $[A N]$ is the median relative $[\boldsymbol{B C}]$.
is Genrerally: If A is any point in the plane and M is the midpoint of $[B C]$ then we write:

Centroid and Vectors:

If \boldsymbol{G} is the center of gravity (Centroid) of triangle $\boldsymbol{A B C}$ then:

$\overrightarrow{A G}=\frac{2}{3} A \vec{M}$
$\overrightarrow{G M}=\frac{1}{3} \overrightarrow{A M}$
$A \vec{G}=2 \overrightarrow{G M}$

$\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}=\overrightarrow{0}$

Proof:

$\overrightarrow{G B}+\overrightarrow{G C}=2 \overrightarrow{G M}$ (Midpoint of a segment)
But, $2 G M=-G A$
Thus, $\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}=\overrightarrow{0}$
is Conversely: If $\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}=\overrightarrow{0}$ then; \boldsymbol{G} is the center of gravity of triangle $\boldsymbol{A B C}$.
\& Genreralfy: If M is any point of the plane where G is the centroid of $\triangle A B C$ then we can write:
$\overrightarrow{M A}+\overrightarrow{M B}+\overrightarrow{M C}=3 \overrightarrow{M G}$
Proof: Since G is the centroid of $\triangle A B C$ then
$\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}=\overrightarrow{0}$ (Introduce point M.)

$$
G \vec{M}+\overrightarrow{M A}+\overrightarrow{G M}+\overrightarrow{M B}+\overrightarrow{G M}+\overrightarrow{M C}=\overrightarrow{0}
$$

So, $3 \overrightarrow{G M}+\overrightarrow{M A}+\overrightarrow{M B}+\overrightarrow{M C}=\overrightarrow{0}$

$$
\overrightarrow{M A}+\overrightarrow{M B}+\overrightarrow{M C}=-3 \overrightarrow{G M}
$$

Therefore;

