ACMahdi High Schools

dfocusing event:

\checkmark Consider the points $A\left(x_{A}\right) \& B\left(x_{B}\right)$. Write $\overrightarrow{A B}$ in terms of abscissas of $A \& B$.
\checkmark How did you write it in this form?

$>$ What $i s$ an axis?

Let O be any point on a straight line (d) with a directing vector $\vec{i}(\vec{i}$ is collinear with (d)).
Then we call the pair (O, \vec{i}) the reference of (d).
Thus, we define an axis by any straight line with a reference.

\mathbb{E}_{x} : Consider on the axis of reference (O, \vec{i}) the points $R\left(x_{R}\right), N\left(x_{N}\right) \& S\left(x_{S}\right)$.

1) Find abscissa of the points S \& K \qquad
2) a) Trace the vectors: $\overrightarrow{O R}=2 \vec{i}$, \& $\overrightarrow{O N}=-\vec{i}$.

b) Deduce the abscissas of points $R \& N$ \qquad
3) Express: $\overrightarrow{O S} \& \overrightarrow{O K}$ in terms of \vec{i}
4) Consider the vectors: $\overrightarrow{R N} \& \overrightarrow{R S}$
i. Complete the following: If $\overrightarrow{R N}=\overrightarrow{O N}-\overrightarrow{O R}$ then, $\overrightarrow{R S}=$ \qquad
ii. Deduce a writing of $\overrightarrow{R N}, \& \overrightarrow{R S}$ as a function of \vec{i}.
iii. Deduce the abscissas of $\overrightarrow{R N} \& \overrightarrow{R S}$

Algehraic measure: The algebraic measure of a vector $\overrightarrow{A B}$ (or a segment $[A B]$) denoted by $\overline{A B}$ relative to a reference (O, \vec{i}) is the abscissa of $\overrightarrow{A B}$.

> In other words,

$$
\overrightarrow{A B}=\overline{O B}-\overline{O A}=x_{B}-x_{A}
$$

* Thus, if $\overrightarrow{R N}=k \cdot \vec{i}, \forall k \in \mathbb{R}$ then k is the algebraic measure of $\overrightarrow{R N}$
$>$ ISistance betmeen two points: If $A\left(x_{A}\right) \& B\left(x_{B}\right)$ are any two points on the axis of reference (O, \vec{i}) such that $\|\vec{i}\|=1$ unit then, $\|\overrightarrow{A B}\|=\left|x_{B}-x_{A}\right|$

The set of any two non-collinear vectors $\{\vec{i}, \vec{j}\}$ is called a basis of the plane

