Name:

" Trigonometric lines "

Introduction:

The building of the Egyptian pyramids may seem to have little in common with devising modern radar, air-planes and H-bombs. But certain principles of mathematics enter into all such activities. Many are used in the field of mathematics called *Trigonometry*.

A. Goals:

- 1- Find measure of an angle using radian.
- 2- Convert between units of angles.
- 3- Determine the <u>length</u> of an <u>arc</u>.

- 4- Define a trigonometric circle.
- 5- Construct oriented arcs.
- 6- Define trigonometric lines and their properties.

B. A profound review:

1. Labeling the sides of a right-angled triangle:

2. Defining the three main trigonometric ratios: $\sin \alpha$; $\cos \alpha$; and $\tan \alpha$.

Consider the acute angle α enclosed between the two fixed rays [ox) and [oy). Let A be a variable point on ray [oy) and B is its orthogonal projection on [ox).

a. Is α constant? Justify.....

b. Indicate how does $(\tilde{A}B)$ vary with respect to [Ox)?

c. Prove that: $\frac{OB}{OA} = \frac{OB_1}{OA_1}$

d. Prove that: $\frac{OB}{OA} = \frac{OB_2}{OA_2}$

e. Complete: $\frac{OB}{OA} = \dots = \frac{OB_3}{OA_3} = cst$ Fig-1.

f. Does these ratios depend on the:

i. Position of A on ray [oy)?

ii. Value angle α ?.....

Attention!!!In this year we are not only concerned with acute angles of a right triangle.

3. Trigonometric ratios:

***** Cosine and Sine ratios:

	Cosine ratio	Reference triangle	Sine ratio		
remember rule	IN SHORT	Hypotenuse A O p p p o o s	$\sin A\hat{O}B = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{AB}{OA}$ IN SHORT	remember rule	
Cah	$\cos \alpha = \dots$	O Adjacent B t	$\sin \alpha = \dots$	soh	

Tangent and co-tangent Functions:

Tangent ratio	Reference triangle	Cotangent ratio
$\tan A\hat{O}B = \frac{\text{Opposite}}{Adjacent} = \frac{AB}{OB}$	A o	$\cot A\hat{O}B = \frac{Adjacent}{\text{Opposite}} = \frac{OB}{AB}$
$\tan \alpha = \frac{Opp}{adj} OR \tan \alpha = \frac{\sin \alpha}{\cos \alpha}$	O Adjacent B t e	$\cot \alpha = \frac{adj}{Opp} OR \cot \alpha = \frac{\cos \alpha}{\sin \alpha}$ $\cot \alpha \cdot \tan \alpha = 1$
Toa OR tsc	To remember rule	Ccs

C. Fundamental trigonometric identities relating:

1) Sine and Cosine: The Pythagorean identity:

$$\sin^2\alpha + \cos^2\alpha = 1$$

2) Cosine and tangent:

$$\tan^2 \alpha = \frac{1}{\cos^2 \alpha} - 1$$

 $\cos^2 \alpha = \frac{1}{\tan^2 \alpha + 1}$

3) sine and cotangent:

$$\cot^2 \alpha = \frac{1}{\sin^2 \alpha} - 1$$

 $\sin^2 \alpha = \frac{1}{\cot^2 \alpha + 1}$

D. Length of an arc:

Consider the following table:

Length of an arc		Measure of central angle
Greatest arc	Corresponds to	Greatest central angle
$P_{circle} = 2\pi R$	\longrightarrow	360°
vA length l		θ

From the above table we notice that:

The *length* of an arc intercepted by a central angle expressed in:

Degrees	Radians
$l = \frac{2\pi R\theta}{360^{\circ}}$	$l = R\beta$
Where, θ is expressed in degrees	Where β is expressed in radians

E. Trigonometric circle:

Def: is a circle with one unit radius and a definite positive direction called the direct sense, which is the **anti-clock** wise sense.

In the trigonometric circle $(O, \overrightarrow{OA}, \overrightarrow{OB})$, A is the origin of arcs.

Remarkable angles:

Degrees versus radian										
$\alpha : \text{in degrees}$ 0° 30° 45° 60° 90° 120° 135° 150° 180° 270°										
β: in radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$

From the table

If α and β

V		$\cot \alpha \times \cot \beta = 1$
	<u></u>	

Quadrant	1 st - quadrant					
Complements	*				*	
Angle (α) Ratios	0 rad	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	
$\tan \alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	∞	
$\cot \alpha$	8	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	

We notice that

Complementary

$$\alpha + \beta = \frac{\pi}{2}$$

$$\tan \alpha \times \tan \beta = 1$$

$$\cos \alpha = \sin \beta$$

F. Principal determination:

Principal angle is the measure of the oriented arc AP that belongs to the interval:

$]-\pi,\pi]$]-180°,180°]		
If angle is in radian	If angle is in degrees		

G. Trigonometric lines:

Consider the portion of the trigonometric circle $(O, \overrightarrow{OA}, \overrightarrow{OB})$

Form the adjacent figure notice that:

- 1- Horizontal axis represents cosine axis
- 2- Vertical axis represents sine-axis

$$3-\overline{OH} = \cos \alpha$$

$$\overline{HM} = \sin \alpha$$

$$\overline{AT} = \tan \alpha$$

H. Bounding (Framing)trigonometric ratios:

Bounding trigonometric lines						
$ \cos \alpha \le 1$ means $-1 \le \cos \alpha \le 1$ $\forall \alpha \in \mathbb{R}$						
$ \sin \alpha \le 1 \qquad \text{means} \qquad -1 \le \sin \alpha \le 1 \qquad \forall \ \alpha \in \mathbb{R}$						
$ \begin{array}{l} -\infty < \tan \alpha < +\infty \\ -\infty < \cot \alpha < +\infty \end{array}\} \forall \ \alpha \in \mathbb{R} $						

