AlMandi High Schools
 Mathematics
 Name:
 "Trigonometric lines"
 S.S-4.

Introduction:

The building of the Egyptian pyramids may seem to have little in common with devising modern radar, air-planes and H -bombs. But certain principles of mathematics enter into all such activities. Many are used in the field of mathematics called Trigonometry.

A. Goals:

1- Find measure of an angle using radian.
2- Convert between units of angles.
3- Determine the Rength of an arc.

4- Define a trigonometric circle.
5- Construct oriented arcs.
6- Define trigonometric lines and their properties.

B. A profound review:

1. Labeling the sides of a right-angled triangle:

2. Defining the three main trigonometric ratios: $\sin \alpha ; \cos \alpha ;$ and $\tan \alpha$.

Consider the acute angle α enclosed between the two fixed rays [ox) and [oy). Let A be a variable point on ray [oy) and B is its orthogonal projection on [ox).
a. Is α constant? Justify.
b. Indicate how does $(A B)$ vary with respect to $[O x)$?
c. Prove that: $\frac{O B}{O A}=\frac{O B_{1}}{O A_{1}}$
d. Prove that: $\frac{O B}{O A}=\frac{O B_{2}}{O A_{2}}$
e. Complete: $\frac{O B}{O A}=\ldots \ldots . .=\ldots=\frac{O B_{3}}{O A_{3}}=c s t$
f. Does these ratios depend on the:

Fig-1.
i. Position of A on ray $[o y)$?
ii. Value angle α ?
\qquad
\qquad

Attention!!!In this year we are not only concerned with acute angles of a right triangle.

3. Trigonometric ratios:

素 Cosine and Sine ratios:

Cosine ratio		れıference triangle	Sine ratio		
To remember rule	$\cos A \hat{O} B=\frac{\text { Adjacent }}{\text { Hypotenuse }}=\frac{O B}{O A}$		$\\| \sin A \hat{O} B=\frac{\text { Opposite }}{\text { Hypotenuse }}=\frac{A B}{O A}$	To remember	
	IN SHORT $\cos \alpha=\ldots$		IN SHORT $\sin \alpha=$	SOh	

Tangent and co-tangent Functions:

Tanuent ratio	Jeference triangle	Cotangent ratio
$\tan A \hat{O} B=\frac{\text { Opposite }}{\text { Adjacent }}=\frac{A B}{O B}$	A 0	$\cot A \hat{O} B=\frac{\text { Adjacent }}{\text { Opposite }}=\frac{O B}{A B}$
IN SHORT $\tan \alpha=\frac{O p p}{a d j} \text { OR } \tan \alpha=\frac{\sin \alpha}{\cos \alpha}$		IN SHORT $\begin{gathered} \cot \alpha=\frac{a d j}{O p p} \text { OR } \cot \alpha=\frac{\cos \alpha}{\sin \alpha} \\ \cot \alpha \cdot \tan \alpha=1 \end{gathered}$
Toa OR tsc	To remember rule	Ccs

C. Fundamental trigonometric identities relating:

1) Sine and Cosine: The Pythagorean identity:

$$
\sin ^{2} \alpha+\cos ^{2} \alpha=1
$$

2) Cosine and tangent:

3) sine and cotangent:

D. Length of an arc:

Consider the following table:

Length of an arc		Measure of central angle
Greatest arc	Corresponds to	Greatest central angle $P_{\text {circle }}=2 \pi R$
vA length l		360°
		θ

oob From the above table we notice that:
The length of an arc intercepted by a central angle expressed in:

Degrees	Radians
$l=\frac{2 \pi R \theta}{360^{\circ}}$	$l=R \beta$
Where, θ is expressed in degrees	Where β is expressed in radians

E. Trigonometric circle:

Def: is a circle with one unit radius and a definite positive direction called the direct sense, which is the anti-clock wise sense.
In the trigonometric circle $(O, \overrightarrow{O A}, \overrightarrow{O B}), A$ is the origin of arcs.

Remarkable angles:

Degrees versus radian															
$\alpha:$ in degrees	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°					
$\beta:$ in radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{6}$	π	$\frac{3 \pi}{2}$					

ffrom the table

If α and β

$\cot \alpha \times \cot \beta=1$

Quadrant	$1^{\text {st }}$ - quadrant				
Complements	\downarrow		\uparrow	v	\downarrow
$\text { Angle }(\alpha)$	0 rad	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\tan \alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	0
$\cot \alpha$	\bigcirc	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

we notice that

Complementary

$$
\alpha+\beta=\frac{\pi}{2}
$$

$$
\tan \alpha \times \tan \beta=1
$$

$\cos \alpha=\sin \beta$

F. Principal determination:

Principal angle is the measure of the oriented arc $A P$ that belongs to the interval:

$]-\pi, \pi]$	$\left.]-180^{\circ}, 180^{\circ}\right]$
If angle is in radian	If angle is in degrees

G. Trigonometric lines:

Consider the portion of the trigonometric circle $(O, \overrightarrow{O A}, \overrightarrow{O B})$
Form the adjacent figure notice that:
1- Horizontal axis represents cosine-axis
2- Vertical axis represents sine-axis
3- $\overline{O H}=\cos \alpha \quad \overline{H M}=\sin \alpha \quad \overline{A T}=\tan \alpha$

H. Bounding (Framing)trigonometric ratios:

Bounding trigonometric lines			
$\|\cos \alpha\| \leq 1$	means	$-1 \leq \cos \alpha \leq 1$	$\forall \alpha \in \mathbb{R}$
$\|\sin \alpha\| \leq 1$		$-1 \leq \sin \alpha \leq 1$	
$\left.\begin{array}{l} -\infty<\tan \alpha<+\infty \\ -\infty<\cot \alpha<+\infty \end{array}\right\} \forall \alpha \in \mathbb{R}$			

