AlMahdi High Schools	Mathematics	$10^{\text {th_Grade }}$
(Al-Hadath)	"Relation versus Function"	S.S-7

\checkmark Introduction:

The relation-function concept is one of the most important ideas in mathematics, and consequently in our everyday life.

- A football team should include at least one defender.
- In a football match each team has at most one goalkeeper position.
- For each car corresponds, four wheels.
- To each person corresponds, a specific age.

Give four mathematical examples that includes the terms at least or at most (2 for each)

To each month of the year corresponds, one and only one name.
The importance of correspondence lies in prediction of other terms of the relation.
$\mathfrak{E} \mathfrak{g}_{1}$: An engineer tries to find the correspondence (relation) between the car's performance and the number of kilometers it covers.

Example: A tree grows 20 cm per year.
i. Find the height of the tree: $\left\{\begin{array}{l}\text { a) } 3 \text { yearslater } \\ \text { b) } 10 \text { years }\end{array}\right.$
b) 10 yearslater:
ii. Relate the height of the tree to its age.

Relations and Functions can be represented in four interrelated ways:

5		दt	
Graphically	As ordered pairs	In explicit form: as an equation	In a set notation: as a mapping
	$(2,1),(-1,0)$	$\begin{gathered} y^{2}=x^{2}-3 \\ y=x^{2}-3 \end{gathered}$	

Relation versus functions

Study carefully the following table to figure out the definition of a function and that of a relation:

	Examples of functions	Examples of relations
Ordered pair	$N=\{(-1 ; 1),(1 ; 1),(2 ; 4),(3 ; 9)\}$	$R=\{(-3 ; 2),(0 ; 1),(2 ; 5),(0 ; 4)\}$
	List the set of values of the $1^{\text {st }}$ components (abscissas: x)	
		A
	Does there exist an abscissa, x, for which corresponds two ordinates y ?	
		-
Explicit form As an equation	$y=x+1$	$y^{2}=x$
	Find the values of y, for $x=1,4 \& 9$	
		,
	What do you notice?	
		-
Graphically		
	Does there exist an x for which corresponds two values of y ?	
	- ${ }^{\text {r }}$	
Mapping		
	Does there exist an x for which corresponds two values of y ?	
	$\square \square$	

Complete the following definitions:

- A relation is a rule that assigns \qquad
- A function is a rule that assigns \qquad
○○ Terminalogies:

$10^{\text {th }}$-Grade.

Mathematical Relation:

Def_{1}

A relation is a rule (process or method) that produces a correspondence between an initial set of elements called the domain and a final set of elements called the range, such that for each element in the domain corresponds at least one element in the range.

Def 2

 A relation is any set of ordered pairs. The set of all $1^{\text {st }}$ - components of the ordered pairs is called the domain, and the set of all $2^{\text {nd }}$ - components is called the range of the relation.$\mathfrak{E} \mathbf{x}_{1}$: Consider the relation between the width (x) and the length (y) of a rectangle, defined by the expression, $y=2 x-1$.
a) Find for each value of x, suchthat $x=\{1,2,5,7\}$ the corresponding value of y.

Pre-image	x		2		
Image	y		3		

b) What does the set $D=\{1,2,5,7\}$ represent?
c) Find set of range, R, of the given relation.
$\mathfrak{E} \boldsymbol{x}_{2}$: Consider the following Venn diagram:
a) Write the relation that exists between the given sets.
b) Write in extension the set of:
i. Domain:
ii. Range:
\qquad
c) What do the values $-2 \& 4$ represent in the given relation?

Function:

Def	A function is a relation that assigns for each element x in the set of domain one and only one element y in the set of range.

-อ Function machine: For each input value there exists exactly one output value only.

$\mathbb{E}^{2} \mathrm{x}_{3}$: Consider the relation $f: x^{2}+y^{2}=25$, assuming that x is the independent variable.
\boldsymbol{a}. Find for the following values of $x=\{-1,0,2,3\}$ the corresponding values of $y=f(x)$.
\qquad
\qquad
b. Is the above relation a function? Justify.
\qquad
\qquad
How to determine that a given curve is a function or not?

\checkmark Erertical lime test:

We can use the graph of a given relation to determine if this relation defines a function or not.
To check if the graph of a given relation represents a function we perform a test called the vertical line test.

If any vertical line cuts the graph of a given relation in at most one point, then the relation is a function.
$\mathfrak{E} x_{3}$: Use the vertical line test to justify which relation represents a function.

