المادة: الرياضيات الشهادة: المتوسطة نموذج رقم -١ -المدة: ساعتان

الهيئة الأكاديميّة المشتركة قسم: الرياضيات

نموذج مسابقة (يراعي تطبق الدروس والتوصيف المعثل للعام الدراسي ٢٠١٠-٢٠١٧ وحتى صدور المناهج المطوّرة)

ار شادات عامة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشح الإجابة بالترتيب الذي يناسبه دون الالتزام بترتيب المسائل الوارد في المسابقة.

I - (2 points)

Consider the three numbers A, B and C:

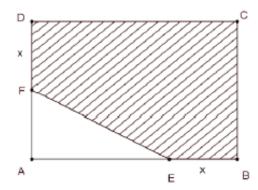
$$A = \frac{{{33 \times 10^{ - 4}} \times 30 \times 10^2 }}{{{36 \times 10^{ - 2}} \times 22 \times 10}} \quad ; \ B = \frac{{7 - \frac{{11}}{3}}}{{1 - \frac{{1}}{6}}} \ ; \ C = (\sqrt 2 - 1)^2 + (\sqrt 2 + 1)^2$$

All details of calculation must be shown.

- 1) Write A as a fraction in its simplest form.
- 2) Show that B is a natural number.
- Verify that C = B+16A.

II - (3 points)

The perimeter of a rectangle is 28cm. If the length is decreased by 10% and the width is increased by 20%, then the perimeter of this rectangle will be 28.8cm.


- a) Write a system of 2 equations of 2 unknowns to model the previous text.
- b) Verify that the original length is 8cm and calculate the original width.
- c) Determine the nature of quadrilateral resulting from modification of dimensions of the rectangle.

III – (4 points) in the figure at the right :

- x is a length expressed in cm such that 0 < x < 4.
- ABCD is a rectangle such that AB=6cm and AD=4cm.
- BE = DF = x

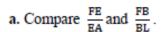
Denote by Y the area of the shaded part.

- 1) Prove that $Y = -\frac{1}{2}(x^2 10x 24)$
- 2) a. Verify that $Y = -\frac{1}{2}((x-5)^2 49)$.
 - **b.** Determine x so that y = 20.
- 3) Z is the area of a square with side (x+2).
 - Express Z in terms of x.
 - **b.** Simplify $\frac{Y}{Z}$.
 - c. Can we calculate x if Y = Z?

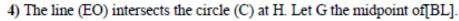
IV - (5.5 points)

In an orthonormal system of axes (x'Ox, y'Oy), consider the points A(3; 0) and B(-1; 2).

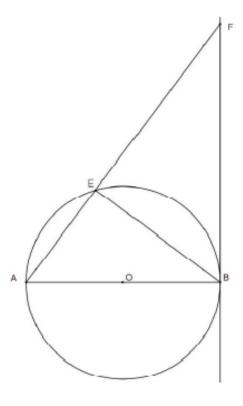
Let (d) be the line with equation y = 2x + 4.


- 1) a. Plot the points A and B.
 - b. The line (d) intersects x'Ox at E and y'Oy at F. Calculate the coordinates of points E and F, then draw (d).

- c. Verify that B is the midpoint of [EF].
- 2) a. Determine the equation of line (AB).
 - b. Verify that (AB) is perpendicular bisector of [EF].
- 3) Consider the point $H(0; \frac{3}{2})$.
 - a. Verify, that H is on the line (AB).
 - b. Show that H is the orthocenter of the triangle AEF.
- Let (C) be the circle with diameter [AF] and (Δ) the line passing through A and parallel to (EH).
 - a. Verify that O and B are on the circle (C).
 - b. Write an equation of the line (Δ) .
 - c. Show that (Δ) is the tangent to (C).


V- (5.5 points)

In the adjacent figure at the right:


- AB =5 cm.
- (C) is the circle with diameter [AB] and center O.
- E a point on (C) such that AE = 3cm.
- The tangent to (C) at B intersect (AE) at F.
- Copy the figure.
- 2) a. Calculate BE
 - b. Prove that the two triangles AEB and ABF are similar.
 - c. Deduce BF and EF.
- 3) L is a point on (FB) such that $BL = \frac{15}{4}$, B is between L and F.

- b. Deduce that (BE) is parallel to (AL).
- c. Show that $AL = \frac{25}{4}$

- a. Prove that EAHB is a rectangle. Deduce that H is on (AL).
- b. Prove that (GH) is tangent to (C).
- c. Calculate, rounded to the nearest degree, the measure of \widehat{GHB} .

