المادة:الرياضيات الشهادة: المتوسطة نموذج رقم _3_ المذة: ساعتان

الهيئة الأكاديمية المشتركة قسم: الرياضيات

نموذج مسابقة (يراعي تطيق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٧-٢٠١ وحتى صدور المناهج المطوّرة)

ار شادات عامة: ـ يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. ـ يستطيع المرسّح الإجابة بالترتيب الذي يناسبه دون الالتزام بترتيب المسائل الوارد في المسابقة.

I- (3 points)

Answer « true » or « false » and justify your answer.

- 1) $(-2x-2)^2 = 4(x+1)^2$.
- 2) The solutions of the equation $x^2 + 10 = 0$ are $\sqrt{10}$ and $-\sqrt{10}$.
- 3) If x is an acute angle and $\sin x = \frac{1}{3}$, then $\cos x = \frac{2}{3}$.
- 4) The equation $(x + 3)^2 = 0$ has no solution.
- 5) If x is a number greater than 3, then $(x^2 + 1)(2x 5)$ is positive.

II- (2 points)

The questions 1) et 2) are independent. Show all the steps of your work.

1) Given $A = \frac{1}{\sqrt{7}+1} + \frac{1}{\sqrt{7}-1}$ and $B = \frac{7}{3\sqrt{7}}$.

Compare A and B

- 2) a) Verify that: $\frac{4\sqrt{2}+2}{4+\sqrt{2}} = \sqrt{2}$.
 - b) Use the previous equality to prove that $\frac{(\sqrt{32}+2)^2}{(\sqrt{36}-10-\sqrt{2})^2}$ is a natural number.

III- (4 points)

ABCD is a rectangle such that AB = 4 m and AD = 3 m. M is a point on [AD]. The parallel through D to (BM) intersects [BC] at N. Let AM = x.

Part A

- 1) Prove that:
 - a) x is less than 3.
 - b) DMBN is a parallelogram.
 - c) NC = x.
- 2) Prove that the area of the square with side DM is $(3-x)^2$.
- Prove that the area of the parallelogram DMBN is equal to 12 4x.

Part B

- 1) Factorize S'-S.
- 2) Can you find x so that the two areas are equal?

3)

- a) Solve the equation (x+1)(3-x) = 3.
- b) Give a geometric interpretation to the result.

IV- (2 points)

The sum of two numbers is 47. When we divide one of the numbers by 2 and the other by 3, the sum becomes 17.5.

1) Which one of these 3 systems is related to the given?

$$\begin{cases} x + y = 47 \\ 3x + 2y = 17.5 \end{cases} \begin{cases} y = 47 - x \\ 3x + 2y = 105 \end{cases} \begin{cases} x + y = 47 \\ \frac{x + y}{2} + \frac{y}{3} = 17.5 \end{cases}$$

Find the two numbers.

V- (4 points)

In an orthonormal system of axes x'Ox and y'Oy), consider the line (D) with equation y = 2x - 1, and the points B(2;3) and C(3;1).

- 1) Draw the line (D) and plot the points B and C.
- 2) Does the line (D) pass through the points B and C? Justify.
- 3) Let (D') be the line with equation $y = -\frac{1}{2}x + \frac{5}{2}$.
 - a) Prove that (D') passes through C and is perpendicular to (D).
 - b) (D') and (D) intersectat S. Determine the coordinates of the point S.
- 4) Determine the coordinates of the point I, centre of the circle circumscribed about the triangle BSC, and determine the length of its radius.
- Determine the coordinates of point A such that BSCA is a parallelogram. Prove that A is a point on the circle circumscribed about BSC.

VI- (5 points)

In the adjacent figure:

- · a semicircle with diameter [AB] and center O;
- AB = 2R;
- E is midpoint of [OB];
- (GE) perpendicular bisector of [OB] (G is a point on the semicircle);
- K is a point on segment [EG]. The line (BK) and the semicircle intersect at M.

- 1) Draw a figure, to be completed in the remaining parts of the problem.
- 2) a) Prove that the triangle OBG is equilateral.
 - b) Calculate GE in terms of R.
 - c) Calculate the angle GMB.
- Prove that the triangles BEK and BMA are similar.
 Deduce that BK x BM = R².
- 4) The perpendicular through E to (AM) intersects (AM) at N.

Calculate the ratio
$$\frac{MN}{AM}$$

- 5) In this part, suppose that k is the centroid of the triangle GOB.
 - a) Calculate EN and MN in terms of R.
 - b) Find R so that the perimeter of the quadrilateral BMNE is equal to $7\sqrt{3} + 3$

2