9 Lycée Des Arts \quad Mathematics \quad "Tangents and Circles" \quad 9th_Grade

1- Consider a semi-circle (c) of center O and diameter $A B=6 \mathrm{~cm}$. Let M and N be two points on (c) where $B \hat{A} N=A \hat{B} M=30^{\circ}$.
a. Draw figure.
b. Prove that the quadrilateral $A B N M$ is an isosceles trapezoid.
c. Compute the perimeter of $A B N M$.
d. The straight lines holding $[A M]$ and $[B N]$ intersect at a point I. What is the nature of triangle IAB?
e. Let P be the midpoint of $[M N]$. Calculate the lengths of $I P$, $O P$ and $A P$. (Ex-2ggb.)
2- Given a circle $C(O ; r)$ with two perpendicular diameters $[A B]$ and $[C D]$, let M be a point on the arc $A \overparen{C C}$ through which a tangent is drawn cutting $(C D)$ at E and $(A B)$ at F.
a. Sketch a graph that translates the above text.
b. Show in two different methods that measure of $M \hat{E} O=2 M \hat{B} O$.
c. In what follows take $E \hat{F} O=30^{\circ}$.
i. Compute in terms of r the measure of $[M F]$.
ii. Deduce also in terms of r the measure of $[E F]$. (Ex-1ggb.)

3- Consider a circle (λ) of center O, radius R and diameter $[A B] . M$ is a point of (λ) and (d) is a tangent to (λ) at M.The tangents at A and B to (λ) intersects (d) at E and F respectively.

1) What is the nature of the quadrilateral $E A B F$? Justify your answer.
2) Find the nature of triangle EOF
3) Prove that the circle of center G and diameter $[E F]$ is tangent to $(A B)$ at O.
4) (OE) intersects $[M A]$ at I and (OF) intersects $[M B]$ at J.
a. Demonstrate that the straight line holding $[I J]$ is parallel to $(A B)$ and that $I J=R$.
b. What is the nature of quadrilateral MJOI ?
5) In what follows, suppose that $R=4 \mathrm{~cm}, B F=2 \mathrm{~cm} \& A E=2 x$.
a. Calculate in terms of x, the perimeter of EABF.
b. Compute in terms of x, the area of the triangle EOF .
c. Calculate in terms of x, the area of $\operatorname{EABF} .(\boldsymbol{E x}-\mathbf{3 g g b}$.

4- Let $[A B]$ be a fixed diameter of a circle $c(O ; 4.5 \mathrm{~cm})$ and M be a variable point on (c), distinct from points $A \& B$.
a. Show that the sum $M A^{2}+M B^{2}$ remains constant as M describes (c).
b. The medians $[A I] \&[B J]$ intersect at G.

Find locus of G as M moves on $(c) ?(\boldsymbol{E x}-\mathbf{4 g g b}$.)
5- Given a circle (C) of center O and diameter $A B=2 R . M$ is any point on (C). The circle of center M and radius $[M A]$ cuts (C) at E. D is the symmetric of A with respect to M.
a. Show that the points D, B and E are collinear.
b. Compare the measure of $[O M]$ and $[B D]$. Deduce the locus of D as M moves on (C). (Ex-5ggb.)

6- Let (λ) be a circle of center O and diameter $[P Q], T$ is a variable point belongs to (d), the tangent, to (λ) at P.
i. Explain, how to construct the second tangent issued from T to (λ), where R designates the second point of tangency.
ii. The straight line $(T R)$ cuts the tangent drawn from Q at N; verify that: $T N=N Q+T P$.
iii. What is the nature of triangle TON.
iv. Study the locus of a point M the midpoint of [TQ] as T varies on (d). (Ex-6ggb.)

7- Given a semi-circle $c(O ; r)$ and diameter $[A B]$, let $\left(c^{\prime}\right)$ be another semi-circle of center O^{\prime} and diameter $[A O]$. Now, consider a secant through A that cuts $\left(c^{\prime}\right)$ at point C and (c) at point D.
a. Outline a figure.
b. Show that the triangles $A O C$ and $C O D$ are congruent.
c. Deduce the relative position of point C with respect to $[A D]$.
d. Prove that, the tangents $(T) \&(\Delta)$ to $\left(c^{\prime}\right)$ through point C and to (c) through point D respectively are parallel. (Ex-7ggb.)

8- Given a circle (C) of center O and diameter $A B=6 \mathrm{~cm}, M$ is a variable point of (C), where D is the symmetric of A with respect to M. And the perpendicular to $(A M)$ at A cuts (C) at E. Finally $(D B)$ intersects $(A E)$ at F.
a. Draw a figure.
b. Find the measure of $A \hat{M} B$ and prove that the triangle $A B D$ is isosceles with principal vertex B.
c. Prove that $[M E]$ is a diameter for the given circle.
d. Show that $(M O)$ is parallel to $(B D)$, then deduce that E is the midpoint of $[A F]$.
e. Confirm that the triangle $A B F$ is isosceles of vertex B.
f. Find the locus of D as M varies on (C).
g. If $(D E)$ intersects $(A B)$ at I.
i. Show that I is the center of gravity of the triangle $A D F$.
ii. Deduce that $I B=2 \mathrm{~cm}$. $(\boldsymbol{E x}-\mathbf{8 g g} \boldsymbol{b}$.)
9. Consider a semi-circle (δ) of center O, radius 6 cm , and diameter $[A B] .[A x)$ and $[B y)$ are the tangents to (δ) at A and B respectively. C is a point on $(\delta)_{\text {such that } C \hat{A} B=30^{\circ} .(A C)}$ cuts $[B y)$ at N and $(B C)$ cuts $[A x)$ at $M . D$ and E are the midpoints of $[A M]$ and $[B N]$ respectively.
a. Prove that D, C and E are collinear and that $(D E)$ is tangent to the semi circle at C.
b. Calculate the sides of the trapezoid $A M N B$.

10- Consider a circle (C) of center O, radius 3 cm , and diameter $[A B]$. Designate by (T) the tangent at A to (C) and by M any point on (T). From M, draw the other tangent $(M E)$ which intersects $(A B)$ at $F .(O E)$ cuts (T) at G. S is the orthogonal projection of O on $(G F)$.
a. Draw a sketch.
b. Prove that $\triangle A M E$ is isosceles and that $(M O)$ is the perpendicular bisector of $[A E]$.
c. Show that O is the orthocenter of $\triangle M G F$. Deduce that points $M, O \& S$ are collinear.
d. Let I be the midpoint of $[A E]$. Find the locus of I as M varies on (T).
e. Suppose that $A \hat{M} E=60^{\circ}$.
i. Find the length of $A M$.
ii. Compute the area of \triangle AME. $(\boldsymbol{E x}-\mathbf{1 0 g g b}$.

11- In the adjacent figure, $[A B]$ is a diameter of circle of center O and M is a point on circle.

1) Draw the tangent to the circle at M to meet the parallel drawn from point O to $(A M)$ at point R.
2) Show that the triangle $O M A$ is isosceles.
3) Show that $[O R]$ is the bisector of $M \hat{O} B$.
4) Show that the two triangles $M O R$ and $R O B$ are congruent.
5) Deduce that the points O, M, R and B belong to the same circle whose diameter is to be determined. (Ex-11ggb.)
12- Given a circle (c) of center O and radius $R,[B C]$ is a diameter of (c).
A is a point of (c) such that: mes $\widehat{\mathrm{AC}}=120^{\circ}$.
a. Calculate the angles of the triangle $A B C$.
b. Deduce that $A B=R$ and find the length of $[A C]$.
c. Through point C draw the tangent (T) to $(c) ;(T)$ and $(A B)$ intersect in point D. Calculate interms of R , the length of $C D$ and $A D$.
d. The line passing through O and parallel to $(A B)$ cuts $(C D)$ at E. Show that the two triangles $O A E$ and $O C E$ are congruent.
e. Deduce that $(A E)$ is tangent to (c) at A. (Ex-12ggb.)
13- Given the circle $C(O ; 4 \mathrm{~cm})$ and the line (d) that passes through O and cuts the circle (C) at A and B. Let M be the symmetric of O with respect to A. Draw (MT) tangent to (C) with tangency point T.
a. Draw a figure.
b. Calculate the length of: $M T$ and $A T$.
c. Calculate the measure of angles: $A \hat{O} T, A \hat{M} T$ and $A \hat{B} T$, and then deduce the magnitude (norm) of $\overline{T B}$.
d. Line $\left(d^{\prime}\right)$ is perpendicular to (d) at B \& cuts tangent $(M T)$ at E.
Show that quadrilateral $O B E T$ is inscribed in a circle, whose center \& radius are to be determined. (Ex-13ggb.)
14- Consider the triangle $A B C$ to be inscribed in a circle $C(O ; r c m)$, the heights $A B C$ \& $A B C$ cut $A B C$ at $A B C \& A B C$ respectively.

15- Consider a semi-circle $C(O ; r), \&$ diameter $[A B]$. The perpendicular bisector, (d), of $[O A]$ cuts $[O A]$ at E and (C) at F. A variable chord $[A M]$ intersects $[E F]$ at $K .(E x-15 g g b$.

1) Draw figure.
2) a - Show that: $A F=R$.
b - Calculate the area of triangle $A F B$ interms of R.
3) Prove that quadrilateral $E K M B$ is inscribed in a circle (C^{\prime}) whose center G is to be determined.
4) Designate by H the foot of perpendicular drawn from G to $(A B)$.
a. Calculate the length of $B H$ interms of R.
b. Determine the locus of point G as M describes the arc $\overparen{B F}$ of the semi-circle (C).

16- Consider the circle $\eta(O ; r)$, let (d) and (d^{\prime}) be two parallel tangents to (η) at A and B respectively. (Ex-16ggb.)
a. Construct a figure.
b. Confirm that points A, O and B are collinear.
c. Let C be a point on (η), from C draw a tangent to (η) that intersects (d) at A^{\prime} and $\left(d^{\prime}\right)$ at B^{\prime}.
i. Prove that: $A^{\prime} \hat{O} B^{\prime}$ is right.
ii. Prove that: $A^{\prime} B^{\prime}=A A^{\prime}+B B^{\prime}$.
d. Let I and J be the respective midpoints of $[A C] \&[B C]$.
i. What is the nature of quadrilateral OICJ?
ii. The diagonals of OICJ intersect at a point S. Find the locus of S as C varies.

17- Consider the triangle $T O N$, right at O where $O T=5 \mathrm{~cm}$, and $O \hat{T} N=60^{\circ}$.
a. Draw the circle (C) of center T and tangent to $(O N)$ at O.
b. The other tangent from N to (C) intersects it at P. Calculate $T N, O N$, and $P N$. Explain.
c. If $[T N]$ intersects (C) at E, let M be the point diametrically opposite to E and let (d) be the tangent to (C) at M. Prove that lines (d) and $(O P)$ are parallel.
d. Show that points P, T, O and N belong to the same circle (C^{\prime}), whose center and radius are to be determined.
e. Let B be any variable point on (C) and I be the midpoint of $[B M]$.
Find the locus of I when B describes (C). (Ex-17ggb.)
18- Consider the circle $C(O ; r=4 \mathrm{~cm})$. Let (d) be a straight line passing through O and cuts (C) at $A \& B$. Allow M to be the symmetric of O with respect to point A, and (MT) be a tangent drawn from M to (C) at point T.
a) Draw figure.
b) Calculate the measure of segments $[M T] \&[A T]$.
c) Prove that $T \hat{M} O=30^{\circ}$.
d) Trace the line $\left(d^{\prime}\right)$ perpendicular to (d) at B cuts the $(M T)$ at a point E.
i. Prove that $[E O)$ is the bisector of $T \hat{E} B$.
ii. Deduce the nature of triangle TBE.
iii. The interior bisectors of triangle TBE intersect at J. Show that J belongs to (C).

19- Given a circle (C) with center O and diameter $A B=6 \mathrm{~cm}$. Take a point H on $[O B]$ such that $H B=1 \mathrm{~cm}$. The perpendicular at H to $(O B)$ cuts (C) in P. Let C be a variable point on arc $\overparen{A P}$ and N be the orthogonal projection of B on $(C P)$.
a. Draw figure.
b. Calculate the magnitude of: $H P$ and $B P$.
c. Show that: $N \hat{P} B=C \hat{A} B$.
d. 1- Show that the points $H, B, N \& P$ belong to the same circle.

2- Deduce that: $B \hat{H} N=B \hat{P} N=C \hat{A} B$.
e. The straight line $(H N)$ cuts $(B C)$ in E.

1. Show that $(H N)$ is perpendicular to $(B C)$.
2. Find the locus of point E as C varies on $\operatorname{arc} \overparen{A P}$.

20- Consider a right angle $X \hat{O} Y, A$ is a fixed point on $[O X)$ such that $O A=4 c m$. Let I be a variable point on the perpendicular at A to $[O X)$ such that $I A>4 c m$.
The circle $\eta(I ; I A)$, cuts $[O Y)$ in $B \& C(B$ is between $O \& C)$. The straight line ($C I)$ cuts the circle in point P and $[O X)$ in point K.

1. Show that $[C A)$ is the bisector of $B \hat{C} I$.
2. What does point A represent for arc $B P$.
3. Show that: $C \hat{P} A=A \hat{B} O$.
4. Let H be the orthogonal projection of A on (CK).
a. Show that triangles $O A B \& A H P$ are congruent. Deduce that side $A H=4 \mathrm{~cm}$.
b. Find the locus of H as I vary.
c. Show that: $O C=H C$.
5. In what follows let the radius of $I A=5 \mathrm{~cm} \& O C=x(x>5 \mathrm{~cm})$.
a. Verify that: $I H=x-5$.
b. By using the right triangle $I A H$, show that x satisfies the equation: $(x-5)^{2}=9$. Solve it to find value of x.
21- Consider an isosceles triangle $A B C$, of main base $B C=12 \mathrm{~cm}$ and its height $A H=8 \mathrm{~cm}$. Let O be the point of $[B H]$ such that $O B=5 \mathrm{~cm}$. The circle of center O and radius $O B$ cuts $(A B)$ in M and ($B C$) in D.
6. a- Compare $O \hat{M} B \& O \hat{B} M$.
$b-$ Show that $O \hat{M} B=A \hat{C} B$.
c- Deduce that $O M A C$ is an inscribed quadrilateral.
7. a- Calculate the measure of $\overline{A C}$.
b - Show that triangles $B M D \& A H C$ are congruent.
c - Deduce that $M D=8 \mathrm{~cm}$ and $M B=6 \mathrm{~cm}$.
8. (MD) cuts $(A H)$ in S. Let $S H=x$.
a. By using two congruent triangles of your choice, show that $S M=S H=x$.
b. By using Pythagoras' theorem in triangle $H S D$, show that $x=3 \mathrm{~cm}$.
9. a - Show that BHSM is an inscribed quadrilateral.
b - Determine its center J and calculate the length of its radius.

22- Consider a circle (C) of center O and diameter $A B=6 \mathrm{~cm}$. Let M be a variable point on (C). Designate by S the midpoint of arc $M B$. The straight line $(A S)$ intersects $(M B) \&$ the tangent at B to (C) at $H \& R$ respectively. Finally $(A M)$ intersects $(B S)$ at L.

1. Draw figure.
2. a- Show that (BS) bisects angle $M \hat{B} R$.
b- Deduce that triangle $H B R$ is isosceles.
3. a- What does H represent for triangle $A L B$?
b- Deduce that $(L H)$ is parallel to $(B R)$.
4. a- Show that triangles SBR \& SLH are congruent.
b- Deduce that quadrilateral BRLH is a rhombus.
23- Given the circle $C(O ; 5 \mathrm{~cm})$ of fixed diameter [AB]. Let (xy) be the tangent to (C) at A, and M be a variable point on $(C) .(M P)$ is the perpendicular to $[A B]$ and $(M Q)$ is the perpendicular to $(x y)$. Let I be the midpoint of $[P Q]$.
5. Draw a figure.
6. Compare $[A M] \&[P Q]$.
7. Show that the triangle $A I O$ is right at I.
8. Show that $[M A)$ is the bisector of $Q \hat{M} O$.
9. The tangent at M to (C) intersects $(x y)$ at T. Show that ($T I$) is the perpendicular bisector of $[A M]$. Deduce that the points $T, I, \& O$ are collinear.
10. G is the center of gravity of triangle $A M B$. Find the locus of point G.

24- C is a point on a circle (φ) of center O and diameter $A B=8 \mathrm{~cm}$, such that $A C=4 \mathrm{~cm}$.
a. Find the nature of triangles $A C B \& A C O$. Justify.
b. If H be the midpoint of $[C B]$. Show that (OH) is parallel to (CA). Compute OH .
c. Let be I the midpoint of $[A O]$; and the line $(C I)$ intersects (φ) at point D.

Show that the quadrilateral $C A D O$ is a rhombus.
d. Prove that points D, O, and H are collinear.
e. Determine the nature of triangle $C D B$.
25- Given O the midpoint of the segment $A B=8 \mathrm{~cm}$. Let E be a point on $(A B)$ and exterior to $[A B]$ such that $\frac{E A}{E B}=3$.

1. Prove that $A E=12 \mathrm{~cm} \& B E=4 \mathrm{~cm}$ then verify that B is the midpoint of [OE].
2. Draw through E the perpendicular (D) to $(A B)$ and designate by (C) the circle of diameter $[A B]$. A variable secant drawn through A cuts again the circle (C) at I and (D) at M. The perpendicular at M to (D) intersects (OI) at O^{\prime}.
a. Draw figure.
b. What is the nature of triangle AOI?
c. Prove that $O^{\prime} I M$ is an isosceles triangle of vertex O^{\prime}.
3. Let C^{\prime} be the circle of center O^{\prime} and radius $O^{\prime} I$.

Prove that (C^{\prime}) is tangent to (D) at M and to (C) at I.
4. Let M^{\prime} be the symmetric of M with respect to O^{\prime}.

Prove that the points M^{\prime}, I, and B are collinear.
5. Prove that points B, E, M and I belong to a circle whose center K is to be determined. Find locus of K as I describe the circle.

