Lycée Does Arts
Mathematics
Name: Powers \& Powers of 10

I- Reduce the following to simplest possible form:

1. $5^{2}-3^{2} \times 2^{2}$
2. $2 \times\left(3-2^{2}\right)^{3}$
3. $\left(2^{3} \times 3^{5}\right)^{0}$
4. $\left(25-4^{2}\right) \times 9^{3}$
5. $\left(2^{3}-3^{5}\right)^{0}$
6. $\frac{8^{5}-6 \times 2^{12}}{2^{3} \times 4^{5}}$

II- Write the following in the form of prime bases (as fractions with lowest terms):
a. $\left(25^{-1}\right)^{3} \times 125^{2} \times\left(5^{-5}\right)^{-2}$
b. $\left(6 \times 3^{2}\right)^{3} \times\left(12-2^{2}\right)^{4}$
c. $\left(-3^{-2}\right)^{-1} \times\left(-27^{2}\right)^{5} \times 81$
d. $\left(15^{2} \times 25^{3}\right)^{4} \div 27^{2}$

III- Compare:
a. $\left(-3^{12}\right)$
c. $(-4)^{2}$
$(-4)^{5}$
b. $\left(9^{3}\right)$
d. $(0)^{5}$
$(5)^{0}$

IV- Simplify the following expressions:
a. $-x^{-3} \times\left(-x^{2}\right) \times\left(-x^{3}\right)^{2}$
b. $\frac{25 x^{2} \times\left(12 y^{5}\right)^{3}}{\left(15 x^{0}\right)^{3} \times\left(8 y^{2}\right)^{3}}$
c. $\frac{6 c}{15 b} \times \frac{2 b a^{2}}{3 c^{2}} \div \frac{4 a}{9 b c}$
d. $4^{x} \times 8^{-2 x} \times 2^{3 x+1}$
\boldsymbol{V} - \quad Find x and y :
a. $4^{2} \times 2^{x+1} \times 2^{-3}=2^{8}$
b. $6^{2} \times 2^{3 x} \times 3^{2 y-1}=12^{5}$
c. $3^{4} \times 9^{2 x-1} \times 27^{x}=81^{3}$
d. $\frac{\left(2^{3} \times 4^{y}\right)}{2^{y-1}}=8^{5}$.

VI- Write the following in the form of power of 10, then in decimal form:
a. $23 \times(10000)^{-1}$
b. 0.0021×100.
c. $\frac{1}{4} \times 10^{5} \times\left(0.2 \times 10^{-1}\right)^{3}$
d. $10^{3}+10^{-2}$.

VII- Consider the two numbers $x=-\frac{1}{3} \times 10^{-2} \& y=-6 \times 10^{3}$.
Determine: a- ky.
b- $\frac{2 x}{y}$.
$c-\frac{x^{2}}{y}$.

VIII- Write in scientific notation:
a. $\frac{2 \times 10^{3}-2 \times 10^{2}}{22 \times 10^{2}}$
b. $10^{-1}+10^{-3}$
c. 325×10^{-7}
d. 0.00125×10^{6}.
$\boldsymbol{I X}$ - Given $\mathrm{C}=\frac{8^{20}+4^{10}}{8^{4}+4^{26}}$

1) Verify that $\mathrm{C}=2^{8}$.
2) Write C in a scientific notation form.
3) Frame C between two consecutive powers of 10 .
\boldsymbol{X} - Pick up the only right answer, justifying yourself.

No.	Problem	Expected answer		
		B	C	
1.	$5 \times 10^{-3}=$	50^{-3}	0.005	-150
2.	$10^{3} \times\left(-\frac{5}{2}\right)^{-2} \times \frac{5^{-1}}{2^{+3}}$	4	0	10
3.	$\frac{x^{-2}}{y^{-2}} \div \frac{y^{-1}}{x^{-1}}$	$(x y)^{-3}$	$\left(\frac{x}{y}\right)^{3}$	$\left(\frac{y}{x}\right)^{3}$
4.	$2^{3}+2^{-3}$	0	$\frac{65}{8}$	2^{0}
5.	$\left.\begin{array}{c}\text { If } r=11^{27}-11^{25} \\ \text { and } n=11^{25}-11^{24}\end{array}\right\}$, then	$\frac{r}{n}=110$	$\frac{r}{n}=132$	$\frac{r}{n}=121$
6.	If n is a natural \& $n \neq 0$ then $\left[(-45)^{n}\right]^{2} \times\left[(-7.5)^{2 n+1}\right]^{3}$ is	Positive	Negative	We cannot tell unless solved

XI- Justify that the numerical expressions below are equivalent:

$$
R=\left(\frac{3}{4}\right)^{2}-\frac{1}{2} \quad \text { and } \quad N=\left(\frac{3}{4}-\frac{1}{2}\right)^{2}
$$

XII- Consider the numbers: $B=\frac{-81 \times 10^{5} \times\left(5 \times 10^{-3}\right)^{2}}{15^{3} \times 10^{-2}} \quad C=0.001125$
a. Simplify B, and then write it in scientific notation.
b. Write C in the form of $d \times 10^{n}$ where d is between $1 \& 9$ and n is an integer.

XIII- Assume that the adjacent figure is a right triangular piece of land.
a. Find the numerical values of $x \& y$ so that its area is $10^{3} \mathrm{~m}^{2}$.
b. To fence this piece of land we used $222 m$ of wires.

Deduce the measure of the side $[A B]$.

c. Based on your calculation. Is the given piece of land right at C ? Give a simple explanation.
XIV- Answer by true or false and justify your answer.

1) $\boldsymbol{A}=\frac{3^{8}-9^{3}}{9^{2}+3^{5}}$ is a natural number.
2) If n is a non-zero natural number, then the sign of: $\mathrm{E}=-\left[(-5)^{n+1}\right]^{2} \times\left[(-7)^{2 n+1}\right]^{3}$ is negative.
$\boldsymbol{X V}-\quad$ Let $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ and \boldsymbol{D} are four points in the plane such that:

$$
A B=\frac{(-7.2)^{3} \times(4.8)^{2} \times 27^{2}}{(-24)^{2} \times(-3.6)^{5} \times 9} \quad ; \boldsymbol{B C}=\frac{2}{3}+\frac{4}{5} \div\left(1+\frac{3}{5}\right)+\frac{5}{6} \quad ; \boldsymbol{A} \boldsymbol{C}=\frac{49^{4}+5 \times 7^{9}}{7^{8} \times 9}
$$

1) a) Show that $\boldsymbol{A B}=2$.
b) Reduce $\boldsymbol{B C}$.
c) Verify that: $\boldsymbol{A C}=\boldsymbol{A B}+\boldsymbol{B C}$.
2) a) What can you deduce about the points $\boldsymbol{A}, \boldsymbol{B}$ and \boldsymbol{C} ?
b) Deduce the relative position of the point \boldsymbol{B} with respect to $[\boldsymbol{A C}]$. (Draw a figure)
3) Consider the numbers: $\boldsymbol{A D}=5^{2} \times\left(2^{2}+1\right)^{2} \div 5^{3}$ and $\boldsymbol{D C}=\boldsymbol{G} \boldsymbol{C D}(65 ; 75)$
a. Write $\boldsymbol{A D}$ in the form of a power of 5 .
b. Calculate $\boldsymbol{D C}$.
c. What is the relative positions of:
i. The point \boldsymbol{D} with respect to the points \boldsymbol{A} and \boldsymbol{C}.
ii. The straight line $(\boldsymbol{D B})$ represent to the segment $[\boldsymbol{A C}]$? Justify.

Alastering problemss			
Chapter	Exercises	Pages	
CH -: Powers	$1,2,4,6,10,11,13,18 \& 19$	$12 \longrightarrow 19$	
	$3 \& 4$	240	
	$5 \& 7$	241	

