Al- Mahdi High	Mathematics	11 th -Grade
Name:	Second degree equations	W.S-1

- *I* a) Expand:
 - *i* $(2-\sqrt{5})^2$. *ii*- $(3-\sqrt{2})^2$
 - b) Determine if possible, the roots of:

1)
$$x^{2} + (2 + \sqrt{5})x = -2\sqrt{5}$$
.

- 2) $x^{2} + (3 + \sqrt{2})x + 3\sqrt{2} = 0$
- *II* Solve in \mathbb{R} the following equations:
 - a. $9x^4 + 5x^2 4 = 0$ b. $(3x^2 - 2x + 1)^2 - 3(3x^2 - 2x + 1) + 2 = 0$ c. $x(x+1)(x^2 + x + 1) = 42$ (Let : u = x(x+1)) d. $x - 2 + \sqrt{(3x-4)^2} = 2$ e. $\sqrt{9x^2 - 6x + 1} = 3x - 1$ f. $2x^6 - 3x^3 = -1$
- *III* Determine the numerical value of *b*, so that the equation: $4x^2 + bx + b = 0$, admits a double root in \mathbb{R} .
- *IV* Consider the trinomials: $R(x) = 5x^2 + x 6 \& N(x) = 7x^2 + 4x 3$.
 - *a*. For what values of *x* is:
 - *i.* R(x) strictly positive.
 - *ii.* N(x) strictly negative.

b. Deduce the solution of the system: $\begin{cases} N(x) < 0 \\ R(x) > 0 \end{cases}$

- c. Deduce the domain of: $\sqrt{R(x)}$.
- V- Let $p(x) = (m-1)x^2 2(m+1)x + 2m + 4$ be any parametric trinomial.
 - a. Study according to the values of m the existence of the roots of p(x).
 - b. Determine the set of value of m so that $p(x) > 0, \forall x \in \mathbb{R}$.
 - c. Determine the numerical value of m if:
 - *i*. The roots of p(x) are opposite.
 - *ii.* +1 is not a root of p(x).
- *VI* Answer with justification by *true* or *false*:
 - *a*. The 2nd degree trinomial: $E(x) = -3x^2 + 5x 4$, admits two strictly positive roots. (*Don't compute the roots*).

b. If
$$g(x) = ax^2 + bx + c$$
 and:

- *i.* g(x) = 0 admits two opposite real roots, then $a \neq 0$ & c = 0
- *ii.* The product: ac > 0, then g(x) will always have two distinct roots.
- *iii.* g(x) > 0 for all real numbers x, then it is sufficient that $\Delta < 0$.

- *VII* Consider the parametric equation: $(1 + m)x^2 + 3x + m = 0$.
 - 1) Determine the value of m in each of the following cases:
 - *a.* (*E*) admits a single root to be determined.
 - b. (E) has a double root to be determined.
 - 2) Given on the axis (x'ox) the points M'&M'' respective abscissa x'&x'', and the point I(+1). Find the values of *m* for which $\overline{IM'} \times \overline{IM''} < 3$?
- *VIII* Let $f(x) = (m+1)x^2 2(m-1)x m 5$ be a quadratic function with the parametric coefficient *m*.
 - *a*. Prove that: For all $m \in \mathbb{R} \{-1\}$, f(x) admits in \mathbb{R} two distinct roots x' & x'' to be determined.
 - b. Determine the set of values of m for which x' < x'' < 0.
- *IX* For what values of m is the inequality: $(E): (3m-1)x^2 2(3m-1)x 4 > 0$.
- X- Consider the parametric equation $(E): (3m+1)x^2 2(2m+3)x + m 3 = 0$.
 - a. Discuss according to the values of m the existence and the sign of the roots of (E).
 - b. Determine m so that the sum of cube the roots of (E) equals zero.
- **XI-** Consider the parametric equation (E): $x^2 2x m^2 + 2m 5 = 0$
 - 1. Show that: For all $m \in R$, (*E*) admits two different roots.
 - 2. Consider in the orthonormal system (O, \vec{i}, \vec{j}) the points A(x', 0) & B(0, x'') where x' & x'' are the roots of (E).
 - a. Calculate *m* so that $AB = \sqrt{20}cm$.
 - b. Find *m* if area of the triangle AOB is $6.5 cm^2$
- **XII-** Consider the parametric equation $(E): (m+1)x^2 2(m-3)x + 2m 5 = 0$.
 - a. Discuss according to the values of m the existence and the sign of the roots of (E).
 - b. Determine the set of values of m such that (E) admits two distinct roots.
 - c. Determine *m* so that: $(E) < 0, \forall x \in R$.
- **XIII-** Consider the parametric equation $(E): mx^2 2(m-3)x + 2m 1 = 0$.
 - a. Discuss according to the values of m the existence and the sign of the roots of (E).
 - b. Find among the roots, when they exist, a relation independent of m.
- *XIV*-Sara bought a number of scarfs at Malik's for 150\$. If each scarf had been 5\$ more, 5 fewer could have been purchased. Find the price of each scarf.

Alastering problems			
Chapter	Exercises	Pages	
CH-: Second degree equations	1&2	3	
	13,14&16	5&6	
	18&21	7&8	