I- a) Expand:
i- $(2-\sqrt{5})^{2}$.
ii- $(3-\sqrt{2})^{2}$
b) Determine if possible, the roots of:

1) $x^{2}+(2+\sqrt{5}) x=-2 \sqrt{5}$.
2) $x^{2}+(3+\sqrt{2}) x+3 \sqrt{2}=0$

II- Solve in \mathbb{R} the following equations:
a. $9 x^{4}+5 x^{2}-4=0$
b. $\left(3 x^{2}-2 x+1\right)^{2}-3\left(3 x^{2}-2 x+1\right)+2=0$
c. $x(x+1)\left(x^{2}+x+1\right)=42($ Let : $u=x(x+1))$
d. $x-2+\sqrt{(3 x-4)^{2}}=2$
e. $\sqrt{9 x^{2}-6 x+1}=3 x-1$
f. $2 x^{6}-3 x^{3}=-1$

III- Determine the numerical value of b, so that the equation: $4 x^{2}+b x+b=0$, admits a double root in \mathbb{R}.
IV- Consider the trinomials: $R(x)=5 x^{2}+x-6 \& N(x)=7 x^{2}+4 x-3$.
a. For what values of x is:
i. $R(x)$ strictly positive.
ii. $\quad N(x)$ strictly negative.
b. Deduce the solution of the system: $\left\{\begin{array}{l}N(x)<0 \\ R(x)>0\end{array}\right.$
c. Deduce the domain of: $\sqrt{R(x)}$.
\boldsymbol{V} - Let $p(x)=(m-1) x^{2}-2(m+1) x+2 m+4$ be any parametric trinomial.
a. Study according to the values of m the existence of the roots of $p(x)$.
b. Determine the set of value of m so that $p(x)>0, \forall x \in \mathbb{R}$.
c. Determine the numerical value of m if:
i. The roots of $p(x)$ are opposite.
ii. +1 is not a root of $p(x)$.

VI- Answer with justification by true or false:
a. The $2^{\text {nd }}$ degree trinomial: $E(x)=-3 x^{2}+5 x-4$, admits two strictly positive roots. (Don't compute the roots).
b. If $g(x)=a x^{2}+b x+c$ and:
i. $g(x)=0$ admits two opposite real roots, then $a \neq 0 \& c=0$
ii. The product: $a c>0$, then $g(x)$ will always have two distinct roots.
iii. $g(x)>0$ for all real numbers x, then it is sufficient that $\Delta<0$.

VII- Consider the parametric equation: $(1+m) x^{2}+3 x+m=0$.

1) Determine the value of m in each of the following cases:
a. (E) admits a single root to be determined.
b. (E) has a double root to be determined.
2) Given on the axis ($x^{\prime} o x$) the points $M^{\prime} \& M^{\prime \prime}$ respective abscissa $x^{\prime} \& x$ ", and the point $I(+1)$. Find the values of m for which $\overline{I M^{\prime}} \times \overline{I M^{\prime \prime}}<3$?
VIII- Let $f(x)=(m+1) x^{2}-2(m-1) x-m-5$ be a quadratic function with the parametric coefficient m.
a. Prove that: For all $m \in \mathbb{R}-\{-1\}, f(x)$ admits in \mathbb{R} two distinct roots $x^{\prime} \& x^{\prime \prime}$ to be determined.
b. Determine the set of values of m for which $x^{\prime}<x^{\prime \prime}<0$.
$\boldsymbol{I X}$ - For what values of m is the inequality: $(E):(3 m-1) x^{2}-2(3 m-1) x-4>0$.
X - Consider the parametric equation $(E):(3 m+1) x^{2}-2(2 m+3) x+m-3=0$.
a. Discuss according to the values of m the existence and the sign of the roots of (E).
b. Determine m so that the sum of cube the roots of (E) equals zero.
XI- Consider the parametric equation $(E): x^{2}-2 x-m^{2}+2 m-5=0$
1. Show that: For all $m \in R,(E)$ admits two different roots.
2. Consider in the orthonormal system (O, \vec{i}, \vec{j}) the points $A\left(x^{\prime}, 0\right) \& B\left(0, x^{\prime \prime}\right)$ where $x^{\prime} \& x^{\prime \prime}$ are the roots of (E).
a. Calculate m so that $A B=\sqrt{20} c m$.
b. Find m if area of the triangle $A O B$ is $6.5 \mathrm{~cm}^{2}$

XII- Consider the parametric equation $(E):(m+1) x^{2}-2(m-3) x+2 m-5=0$.
a. Discuss according to the values of m the existence and the sign of the roots of (E).
b. Determine the set of values of m such that (E) admits two distinct roots.
c. Determine m so that: $(E)<0, \forall x \in R$.

XIII- Consider the parametric equation $(E): m x^{2}-2(m-3) x+2 m-1=0$.
a. Discuss according to the values of m the existence and the sign of the roots of (E).
b. Find among the roots, when they exist, a relation independent of m.
XIV-Sara bought a number of scarfs at Malik's for $150 \$$. If each scarf had been $5 \$$ more, 5 fewer could have been purchased. Find the price of each scarf.

flastering problems		
Chapter	Exercises	Pages
CH-: Second degree	$1 \& 2$	3
	$13,14 \& 16$	$5 \& 6$
	$18 \& 21$	$7 \& 8$

