Al Mahdi High Schools

Mathematics

10th-Grade

Name:

"Domain and Parity"

W.S-10

I- Consider the following curves:

rmine	Domain		
Dete	Parity		

II- Complete the following curves so that:

III- Determine the values of x for which there exists a y (domain of definition)

a.
$$f(x) = \frac{x-1}{x^2 - 3x + 2}$$

b. $g(x) = \frac{x+3}{x^2 + 4x - 3}$
c. $h(x) = \frac{x}{x^2 + 1}$
d. $k(x) = \frac{x}{|x+2| - 3}$
e. $l(x) = \frac{x}{|x| + 2}$
f. $m(x) = \frac{x}{|x-1|}$
g. $n(x) = \frac{\sqrt{x-2}}{|x-2| + 1}$
h. $p(x) = \frac{x}{\sqrt{3-x}}$
i. $q(x) = \sqrt{\frac{x-1}{2-x}}$

Mathematics. W.S-10 Domain & Parity of a Function

IV- Choose the only correct answer with *justification*:

	Quanting	Proposed choices		
<i>JNO</i> .	Questions	Я	\mathcal{B}	С
1.	The function $g: x \mapsto g(x) = \frac{\sqrt{x-2}}{(x -3)(x-2)}$]−∞,−3[∪]2,3[[2;+∞[]2;3[∪]3;+∞[
	is defined for all $x \in$			
2.	The graph of the function S defined over \mathbb{R} by $S(x) = \frac{x \sin x}{2 - x^2}$ is symmetric with respect to	Abscissa axis	Origin	y–axis
3.	h(x) = g(x) then, <i>h</i> is	Even	Odd	Can't tell
4.	The function $f: x \mapsto f(x) = \frac{\sqrt{x^2 - 4}}{\sqrt{x + 4}}$ is]-∞;-2]∪[2;+∞[[-4;+2]]−4;−2]∪[2;∞[
	defined over the interval: The function f defined on R^* by:			
	$f(x) = \frac{x^2 - 2}{ x }$ is :	odd	even	Neither even nor odd
	The function <i>f</i> defined by $f(x) = \frac{\sqrt{1-x}}{x+2}$ the domain of definition of <i>f</i> is :]-∞,-2[∪]-2,1]]-2,+1[[-2;1[
	The function f defined by $f(x) = \frac{5x-1}{\sqrt{1- x }}$ the domain of definition of f is:	[-1;1]]-∞,-1[∪]1,+	∞[]1,+1[
	The function <i>f</i> defined on R^* by : $f(x) = \frac{-x^2 + 4}{x}$ is :	odd	even	Neither even nor odd

V- Consider the function f defined by its representative curve C_f in the figure below: 1- Domain and Parity:

- **a.** Determine domain and range of f.
- **b.** Does f admit any parity? Justify.
- 2- Assume in this part that *f* is defined over I = [-4;4]. Complete the graph of *f* so that C_f is symmetric *w.r.t*:

a.
$$y-axis$$
.

b.
$$x = axis$$
.

