ALMahdi High Schools	Mathematics	$10^{\text {th }}$-Grade
Name:	"Domain and Parity"	W.S-10

I- Consider the following curves:

II- Complete the following curves so that:

III- Determine the values of x for which there exists a y (domain of definition)
a. $f(x)=\frac{x-1}{x^{2}-3 x+2}$
b. $g(x)=\frac{x+3}{x^{2}+4 x-3}$
c. $h(x)=\frac{x}{x^{2}+1}$
d. $k(x)=\frac{x}{|x+2|-3}$
e. $l(x)=\frac{x}{|x|+2}$
f. $m(x)=\frac{x}{|x-1|}$
g. $n(x)=\frac{\sqrt{x-2}}{|x-2|+1}$
h. $p(x)=\frac{x}{\sqrt{3-x}}$
i. $q(x)=\sqrt{\frac{x-1}{2-x}}$

IV- Choose the only correct answer with justification:

\mathcal{N} o.	Questions	Proposed choices		
		A	\mathfrak{B}	C
1.	The function $g: x \mapsto g(x)=\frac{\sqrt{x-2}}{(\|x\|-3)(x-2)}$ is defined for all $x \in$	$]-\infty,-3[\cup] 2,3[$	[2; $+\infty$ [$] 2 ; 3[\cup] 3 ;+\infty[$
2.	The graph of the function S defined over \mathbb{R} by $S(x)=\frac{x \sin x}{2-x^{2}}$ is symmetric with respect to	Abscissa axis	Origin	$y-a x i s$
3.	$h(x)=g(\|x\|)$ then, h is	Even	Odd	Can't tell
4.	The function $f: x \mapsto f(x)=\frac{\sqrt{x^{2}-4}}{\sqrt{x+4}}$ is defined over the interval:	$]-\infty ;-2] \cup[2 ;+\infty[$	$[-4 ;+2]$	$]-4 ;-2] \cup[2 ; \infty[$
	The function f defined on R^{*} by : $f(x)=\frac{x^{2}-2}{\|x\|}$ is :	odd	even	Neither even nor odd
	The function f defined by $f(x)=\frac{\sqrt{1-x}}{x+2}$ the domain of definition of f is :	$]-\infty,-2[\cup]-2,1]$]-2,+1[[-2;1[
	The function f defined by $f(x)=\frac{5 x-1}{\sqrt{1-\|x\|}}$ the domain of definition of f is :	[-1;1]	$-\infty,-1[\cup$	[]-1,+1[
	The function f defined on R by : $f(x)=\frac{-x^{2}+4}{x}$ is :	odd	even	Neither even nor odd

\boldsymbol{V} - Consider the function f defined by its representative curve C_{f} in the figure below: 1- Domain and Parity:
a. Determine domain and range of f.
b. Does f admit any parity? Justify.

2- Assume in this part that f is defined over $I=[-4 ; 4]$.
Complete the graph of f so that C_{f} is symmetric w.r.t:
a. y-axis.

