

I- The adjacent figure shows the representative curve, C_g of a function,

 $g: x^2 \rightarrow x^3 - 2x$ and a straight line(d).

- *a*. Find equation of straight line (d).
- *b*. Solve the following algebraically:

i.
$$x^3 - 2x = f(x)$$
.

ii.
$$x^3 - 2x > f(x)$$
..

iii.
$$x^3 - 2x < f(x)$$
...

- c. What is the graphical interpretation for each of the above parts?
- *II-* Complete the following table:

III- Consider a function r defined over \mathbb{R} by its representative curve C_r . 1- Determine graphically:

i.
$$r(-2)$$

ii. The pre-image of 4 by r.

- 2- Solve graphically: a) r(x)=0b) r(x)=4c) r(x)=-2d) r(x)=-2
- 3- Determine graphically the values of x for which: a) $r(x) \le 2$ b) $r(x) + 2 \ge 0$ c) r(x) is positive. d) $-3 \le 2r(x) + 1 < 9$
- 4- Deduce the solution set of the inequality: $|r(x)| 2 \le 0$.

 C_{q}

*f*ig-1.

- *IV* Let *h* be a function defined over \Re by: $h(x) = x^2 + 2x 3$.
 - *a*. Verify that h admits a minimum to be determined, and find the corresponding value of x at which this minimum is attained.
 - **b.** Study variation of h over the intervals $]-\infty;-1]$ and $]-1;\infty]$.
 - c. Find the roots of $x^2 + 2x 3 = 0$, give the graphical meaning of the roots.
 - *d*. Set up table of variations of *h* over its domain.
 - e. Use above parts to trace the representative curve of h in an orthonormal system of axes.
- *V* Construct the representative curve C_f of the function f defined over the closed interval [-3;7] such that:
 - > The image of 0 by f is 4.
 - > The pre images of 0 by f are 1 & 5.
 - > The adjacent table is the table of variation of f.
- *VI* The (d) & C_h represents respectively a straight line g(x) and the function h defined on [0;5] by: $h(x) = ax^2 + bx + c$.
- 1) Use the C_h to show that: a = -1, b = 6 & c = -5.
 - *a*. Prove by calculation, that $h(x) \le 4$ for every $x \in [0;5]$.
 - b. Deduce that h admits an extremum on [0,5] to be determined.
 - c. Set up the table of variations of h.
 - *d*. Compare without calculation h(3.1) & h(4.1), *justify*.
- 2) Let *k* be another function defined by: $k(x) = \frac{\sqrt{h(x) g(x)}}{h(x)}$.
 - i. Study the relative positions of $(d) \& C_h$.
 - ii. Deduce the domain of definition of k(x).
- 3) From now on, suppose that the given function *h* is defined on [-5;5].
 - a) Knowing that h is even, reproduce the above figure, then complete C_h on [-5;5].
 - b) Deduce the table of variations of h on [-5;5].
- *VII* Draw the representative curve of a function h defined over the interval [-4;8] by its table of signs and table of variation:

- 1) Determine the interval I over which g is defined, and then find the range.
- 2) Draw the representative curve of g over I.
- 3) Solve $g(x) \le 0$ over *I*.
- 4) Show that $g(3) \times g(6) < 0$, interpret your result.

 $f(x) \xrightarrow{6} 2$

ala	Quactiona	Proposed choices			
JV0.	Questions	Я	\mathscr{B}	С	
1.	The curve C_g of a function g defined by $g(x) = \frac{1+3x}{x}$ can be obtained from curve of the function $f(x) = \frac{1}{x}$ by:	A symmetry with respect to y - axis	A translation of vector $\vec{V} = 3\vec{i} + 0\vec{j}$	A translation of vector $\vec{V} = 0 \vec{i} + 3 \vec{j}$	
2.	The function f defined over $]-\infty;-2[$ by $f(x) = \frac{1}{x-2}$ is	Strictly decreasing	Constant	Strictly increasing	
4.	The graph of $h(x) = \sqrt{x+4}$ is the translate of the graph of $g(x) = \sqrt{x}$ by the translation:	$\vec{V} = -4\vec{i}$	$\vec{V} = 2\vec{j}$	$\vec{V} = 4\vec{i}$	
5.	The graph of $r(x) = x^2 + \sqrt{2}$ admits as an axis of symmetry the straight line:	$x = \sqrt{2}$	x = 0	$x = -\sqrt{2}$	
7.	C_g is the curve of a function g which is defined by $g(x) =$ and $D_g = \dots$	$g(x) = -(x+3)^2 + 2$ $D_g = [0;4]$	$g(x) = -(x-2)^2 + 3$ $D_g = [0;4]$	$g(x) = -(x+2)^2 + 3$ $D_g =]-1;4]$	
8.	Consider f & g two functions defined by : $f(x) = x(x-4)$, and $g(x) = (x-2)^2$, then the curve (C_g) is the image of (C_f) by translation of vector $\vec{u} =$	ī	$4\vec{j}$	$-4\vec{j}$	
9.	Consider f and g two functions defined by $: f(x) = \frac{1}{x}$, and $g(x) = \frac{x+1}{x}$ then the curve (C_g) is the image of (C_f) by translation of vector $\vec{u} =$	$\vec{u} = \dot{i}$	$\vec{u} = \vec{j}$	$\vec{u} = -\vec{j}$	

IX- Choose with *justification* the only correct answer that corresponds to each question:

- *X* Answer with *justification* by *True* or *False*:
 - Let f be a function defined by its table of variation:
 - *i.* f admits the interval [-1;1] as a range.
 - *ii.* C_f is decreasing over the interval [0;4].

iii.
$$f(1) < f(3)$$

6

-2

4

-4

-1

х

f(x)

0

▲-3

4

3

XI- Consider the function, *f* defined by its curve at the right.

Part-A: Graphical reading of (C_f)

- 1) Determine the domain of definition of f.
- 2) Study the variation of *f*.
- 3) Determine the maximum of f on [0; 2].
- 4) Construct the table of variations of f.
 - *a* Solve graphically: f(x) < 0, f(x) = -3.
 - *b* Determine m so that f(x) = m admits three distinct roots.
- 5) For $x \in [0; 2]$, we suppose that $f(x) = ax^2 + bx$. Verify that: $f(x) = -2x^2 + 4x$.

Part-B: consider the rectangle *EFGH*, such that EF = x & FG = -2x + 4.

1)Determine as a function of x, the area S(x) of rectangle *EFGH*.

2) Using part A, to determine the maximum value of S(x)

XII- Consider the table of variations of a function f:

XIV- Find values b and c so that the parabola with equation $y = 4x^2 - bx - c$ has a vertex at (2,4)?

- **XV-** Let C_k be the representative curve of a function k.
 - *a.* Determine the domain of definition of k.
 - **b.** Set up the table of variation of k.
 - *c*. Solve graphically:
 - 1) k(x) = 0.2) k(x) 3 = 03) k(x) > 04) k(x) < 05) k(x) < 26) $k(x) \ge 2$ 7) $0 \le k(x) \le 1.$
- **XVI-** f is a function defined on by: $f(x) = -x^2 2x + 4$.
 - *a*. Verify that $f(x) 5 = -(x+1)^2$.
 - i. Deduce that f admits a maximum to be determined.
 - *ii.* Find the value of x where this maximum is reached.
 - **b.** Study the variation of f on each of the following intervals:
 - *i*. $I =] \infty; -1].$
 - *ii.* $J = [-1; +\infty[$
 - c. Set up the table of variation of f.
 - *d*. Sketch the graph of f.
 - e. Solve both *algebraically* and *graphically* the inequality: $f(x) \ge -2x$.
- **XVII-** Consider in an orthonormal system of reference (O, \vec{i}, \vec{j}) the function f defined by its representative curve C_f .
 - a. Precise the domain of f, deduce its parity.
 - **b.** Set up table of variations of f.
 - c. Solve graphically and interpret the results of:

$$i. \quad f(x) = 0$$

- $ii. \quad f(x) > 0$
- *d*. Trace the straight line (*d*): y = x, then discuss graphically the inequality: $f(x) + x \le 0$
- *e*. The part of the curve C_f over the interval [-4;0], is the translate of the curve C_h of a function h given by $h(x) = x^2$ with a translation vector \vec{V} .
 - *i*. Determine coordinates of \vec{V} .
 - *ii.* Find equation of h over [-4;0]

- **XVIII-** Let f be a function defined by $f(x) = x^2 + 2x 3$
 - *a*. Prove that f admits a minimum -4 at a point $A(x_A; -4)$ whose abscissa is to be determined.
 - **b.** Show that f is:
 - *i*. Strictly decreasing on the interval $]-\infty;-1[$.
 - *ii.* Strictly increasing on the interval $[-1; +\infty[$.
 - c. Set up the table of variations of f.
 - **d.** Construct the representative curve C_f of f in the orthonormal reference of axes (O, \vec{i}, \vec{j}) .
 - *e*. Solve algebraically then graphically:
 - *i.* f(x) = m such that $m \in \mathbb{R}$
 - *ii.* $|f(x)| \le 2$.
 - *f*. Construct the graphs of:
 - $i. \quad g(x) = f(x-1)$
 - *ii.* h(x) = f(x) + 4
 - *iii.* k(x) = |f(x)|

$$iv. \quad p(x) = f(|x|).$$

XIX- The adjacent graph shows the representative curve C_f of a function f defined over the closed

- i. Detect the parity of g.
- *ii.* Write g(x) without absolute value.
- *iii.* Trace the representative curve of g on the above system.
- *h*. Let *h* be a function defined by h(x) = f(-x).

Deduce the curve of h and its domain.

- *XX* Let *f* be a function defined by $f(x) = \frac{1}{2}x^2 2$ and (C) is its representative curve in an orthonormal reference(0; \vec{i} ; *j*).
 - 1) Study the parity of *f*. Give a geometric interpretation.
 - 2) a- Prove that f is increasing on $[0; +\infty[$. Deduce the variation of f on $]-\infty; 0]$.
 - b- Prove that f admits a minimum on IR to be determined

c- complete the following table.									
X	0	1	2	3	4				
f(x)									

3) Trace (C).

- 4) Let g(x) = x 2 and (d) is its curve.
 - a- Trace (d) in the same system of axes as (C).
 - b- Solve f(x) = g(x).
 - c- Solve graphically: $\frac{1}{2}x^2 < x$.
- *XXI*-Let g be a function defined, on \mathbb{R} , by: g(x) = (x-4)(x-2). Let (C_g) be the representative curve of g in an orthonormal system $(0; \vec{1}, \vec{j})$.
 - 1) Find the common points between (C_g) and x'x.

2) Verify that
$$g(x) = (x - 3)^2 - 1$$
.

- 3) Prove that g is decreasing on $]-\infty$, 3] and that g is increasing on $[3, +\infty[$.
- 4) Set up the table of variations of g, then deduce the minimum of g.
- 5) Let h be a function defined, on \mathbb{R} , by: $h(x) = x^2$. **a-** Draw (C_h), the representative curve of h, in an orthonormal system (0; \vec{i}, \vec{j}).
 - **b** Deduce the construction of (C_g) after translating (C_h) by a translation vector to be determined, then draw (C_g) .
- **XXII-** Consider in the adjacent figure a curve (C) that represents a function f and a line (Δ) defined by: g(x) = 4x.
 - 1) Find the domain of definition of f.
 - 2) Find f(1) and f(0) graphically.
 - 3) Solve graphically f(x) = 4
 - 4) Compare f(1.5) and f(2) .(without finding their values)
 - 5) Find a local minimum and a local maximum of f.
 - 6) Show that f is neither even nor odd over the interval [-1;1]
 - 7) Setup the table of variation of f.
 - 8) Solve graphically:

a)
$$f(x) = g(x)$$

b)
$$f(x) - 4x \le 0$$

- c) Deduce the domain of definition of the function
- d) $r(x) = \sqrt{4x f(x)}$.

XXIII- Consider the function $f: x \longrightarrow ax^2 + bx$ and its curve C_f defined on the interval *I*.

<u>Part-1</u>: Existence and parity

- **a.** Find the interval I for which f admits an image.
- **b.** Discuss the parity of f.
- c. Utilize C_f to prove that: a = -1 & b = 2.
- *d*. Justify that the standard form of $f : f(x) = -(x-1)^2 + 1$

Part-2: Variation

- 1) Prove that: $f(\mathbf{x}) \leq 1$.
- 2) Deduce that f admits an extremum, and specify its nature.
- 3) Study variation of f over]1,2] and set up table of variations of f.

<u>**Part-3**</u>: Relative positions and translation

a) Use the graph to find equation of(d).

b) Solve graphically: f(x) > 0

*
$$f(x) < 2x -$$

- c) Let g be the image of f by the translation vector $\vec{S} = \vec{i} \vec{j}$:
 - *i*. Determine the equation of g(x).
 - *ii.* Trace on your answer sheet C_g .

XXIV- In an orthonormal system $(O; \vec{i}, \vec{j})$ consider the two vectors $\vec{S}(-x; 2x-3)$ and $\vec{N}(x; -1)$, where

- $x \in \mathbb{R}$.Let $f: x \mapsto f(x)$ be a function defined by $f(x) = \vec{S} \cdot \vec{N}$.
- **a.** Calculate f(x) and find with justification the domain of f.
- **b.** Show that f admits a maximum 4 at a value of x to be determined.

1

- c. Study the variation of f over the intervals:
 - *i.*] $-\infty;-1$].

ii.
$$[-1;+\infty]$$
.

- **d.** Set up table of variations of f, then draw C_f the representative curve of f.
- e. Determine graphically values of x for which vectors $\vec{S} \& \vec{N}$:
 - *i*. Are orthogonal.

ii. Form an acute angle.

Alastering problems						
Chapter	Exercises	Pages				
	6,7,9&12	349 to 351				
CII + Eurotions	22	356				
CH-: Functions	23&24	357				
	25	358				

