I- The adjacent figure shows the representative curve, C_{g} of a function, $g: x^{2} \rightarrow x^{3}-2 x$ and a straight line (d).
a. Find equation of straight line (d).
b. Solve the following algebraically:
i. $x^{3}-2 x=f(x)$.
ii. $x^{3}-2 x>f(x)$..
iii. $x^{3}-2 x<f(x)$.
c. What is the graphical interpretation for each of the above parts?

fig-1.

II- Complete the following table:

Figures		
Given	$C_{f} \& C_{g}$ are defined on[-2;3]	$h(x)=\frac{3}{2} x^{2} \text { and }(d):-3 x+y=0$
Solve graphically	$f(x)=g(x)$.	$h(x)-3 x=0$
	$f(x)-g(x)<0$.	$h(x)<3 x$
	$f(x)-g(x)>0$.	$h(x) \geq 3 x$

III- Consider a function r defined over \mathbb{R} by its representative curve C_{r}.
1- Determine graphically:
i. $r(-2)$
ii. The pre-image of $4 \mathrm{by} r$.

2- Solve graphically: a) $r(x)=0$
c) $r(x)=-2$
b) $r(x)=4 \quad$ d) $r(x)=-2$

3- Determine graphically the values of x for which:
a) $r(x) \leq 2$
b) $r(x)+2 \geq 0$
c) $r(x)$ is positive.
d) $-3 \leq 2 r(x)+1<9$

fig-3.

4- Deduce the solution set of the inequality: $|r(x)|-2 \leq 0$.
$\boldsymbol{I V}$ - Let h be a function defined over \mathfrak{R} by: $h(x)=x^{2}+2 x-3$.
\boldsymbol{a}. Verify that h admits a minimum to be determined, and find the corresponding value of x at which this minimum is attained.
b. Study variation of h over the intervals] $-\infty ;-1$] and $]-1 ; \infty$].
c. Find the roots of $x^{2}+2 x-3=0$, give the graphical meaning of the roots.
d. Set up table of variations of h over its domain.
\boldsymbol{e}. Use above parts to trace the representative curve of $h \mathrm{in}$ an orthonormal system of axes.
\boldsymbol{V} - Construct the representative curve C_{f} of the function f defined over the closed interval $[-3 ; 7]$ such that:
$>$ The image of 0 by f is 4 .
$>$ The pre images of 0 by f are $1 \& 5$.

x	-3	-1	3	7
$f(x)$	4			

$>$ The adjacent table is the table of variation of f.
VI- The $(d) \& C_{h}$ represents respectively a straight line $g(x)$ and the function h defined on $[0 ; 5]$ by: $h(x)=a x^{2}+b x+c$.

1) Use the C_{h} to show that: $a=-1, b=6 \& c=-5$.
a. Prove by calculation, that $h(x) \leq 4$ for every $x \in[0 ; 5]$.
b. Deduce that h admits an extremum on $[0,5]$ to be determined.
c. Set up the table of variations of h.
d. Compare without calculation $h(3.1) \& h(4.1)$, justify.
2) Let k be another function defined by: $k(x)=\frac{\sqrt{h(x)-g(x)}}{h(x)}$.
i. Study the relative positions of $(d) \& C_{h}$.
ii. Deduce the domain of definition of $k(x)$.

fig-4.
3) From now on, suppose that the given function h is defined on $[-5 ; 5]$.
a) Knowing that h is even, reproduce the above figure, then complete C_{h} on $[-5 ; 5]$.
b) Deduce the table of variations of h on $[-5 ; 5]$.

VII- Draw the representative curve of a function h defined over the interval $[-4 ; 8]$ by its table of signs and table of variation:

x	-4	-2	2	6	8
Sign of		\mid	0	\mid	
$h(x)$	-	0	+0	-	0

x	-4	-1	4	8
$h(x)$	-6	\nearrow^{3}		\nearrow^{2}

VIII- Let g be a function defined by its table of variation:

1) Determine the interval I over which g is defined, and then find the range.
2) Draw the representative curve of g over I.
3) Solve $g(x) \leq 0$ over I.
4) Show that $g(3) \times g(6)<0$, interpret your result.

x	-1	1	3	6
$g(x)$	-0		-2	

$\boldsymbol{I X}$ - Choose with justification the only correct answer that corresponds to each question:

	Questions	Proposed choices		
		\mathcal{A}	\mathfrak{B}	C
1.	The curve C_{g} of a function g defined by $g(x)=\frac{1+3 x}{x}$ can be obtained from curve of the function $f(x)=\frac{1}{x}$ by:	A symmetry with respect to y-axis	A translation of vector $\vec{V}=3 \vec{i}+0 \vec{j}$	A translation of vector $\vec{V}=0 \vec{i}+3 \vec{j}$
2.	The function f defined over]- $\infty ;-2[$ by $f(x)=\frac{1}{x-2}$ is	Strictly decreasing	Constant	Strictly increasing
4.	The graph of $h(x)=\sqrt{x+4}$ is the translate of the graph of $g(x)=\sqrt{x}$ by the translation:	$\vec{V}=-4 \vec{i}$	$\vec{V}=2 \vec{j}$	$\vec{V}=4 \vec{i}$
5.	The graph of $r(x)=x^{2}+\sqrt{2}$ admits as an axis of symmetry the straight line:	$x=\sqrt{2}$	$x=0$	$x=-\sqrt{2}$
7.	C_{g} is the curve of a function g which is defined by $g(x)=$ and $D_{g}=\ldots . .$.	$\begin{aligned} & g(x)=-(x+3)^{2}+2 \\ & D_{g}=[0 ; 4] \end{aligned}$	$\begin{aligned} & g(x)=-(x-2)^{2}+3 \\ & D_{g}=[0 ; 4] \end{aligned}$	$\begin{aligned} & g(x)=-(x+2)^{2}+3 \\ & \left.\left.D_{g}=\right]-1 ; 4\right] \end{aligned}$
8.	Consider $f \& g$ two functions defined by : $f(x)=x(x-4)$, and $g(x)=(x-2)^{2}$, then the curve $\left(C_{g}\right)$ is the image of $\left(C_{f}\right)$ by translation of vector $\vec{u}=$	\vec{i}	$4 \vec{j}$	$-4 \vec{j}$
9.	Consider f and g two functions defined by : $f(x)=\frac{1}{x}$, and $g(x)=\frac{x+1}{x}$ then the curve $\left(C_{g}\right)$ is the image of $\left(C_{f}\right)$ by translation of vector $\vec{u}=$	$\vec{u}=\dot{i}$	$\vec{u}=\vec{j}$	$\vec{u}=-\vec{j}$

\boldsymbol{X} - Answer with justification by True or False:
Let f be a function defined by its table of variation:
i. f admits the interval $[-1 ; 1]$ as a range.
ii. C_{f} is decreasing over the interval $[0 ; 4]$.

x	-4	-2	0	4	6
$f(x)$	-1	$\boldsymbol{7}^{4}$		-3	$\boldsymbol{7}^{3}$

iii. $\quad f(1)<f(3)$

XI- Consider the function, f defined by its curve at the right.
Part-A: Graphical reading of $\left(C_{f}\right)$

1) Determine the domain of definition of f.
2) Study the variation of f.
3) Determine the maximum of f on $[0 ; 2]$.
4) Construct the table of variations of f.
a - Solve graphically: $f(x)<0, f(x)=-3$.
b - Determine m so that $f(x)=m$ admits three distinct roots.
5) For $x \in[0 ; 2]$, we suppose that $f(x)=a x^{2}+b x$.

Verify that: $f(x)=-2 x^{2}+4 x$.
Part-B: consider the rectangle $E F G H$, such that $E F=x \& F G=-2 x+4$.
1)Determine as a function of x, the area $S(x)$ of rectangle $E F G H$.
2)Using part A , to determine the maximum value of $S(x)$

XII- Consider the table of variations of a function f :

x	-5	-1	1	3	5

\boldsymbol{a}. Determine with justification:
i. The interval over which f is defined.
ii. The minimum of f over its domain.
iii. Parity of f.
b. Determine $f(-1)$ and $f(1)$.
c. Compare $f(-2.5) \& f(-2)$. Justify your answer.
d. Let $\left(C_{f}\right)$ be the representative curve of f.
i. Construct on a reference frame $\left(C_{f}\right)$.
ii. Study the parity of f graphically.
e. Let g be a function defined by: $g(x)=\frac{x-1}{\sqrt{f(x)}}$, determine the domain of g.

XIII- Let f be a function defined by its table of variation:
Answer with justification by True or False:

a. $f(1)<f(3)$
e. C_{f} cuts x-axis over the interval $[0 ; 4]$.
b. $f(-2) \geq f(-1)$
f. C_{f} cuts x-axis over the interval $[4 ; 6]$.
c. $f(-3)<4$
g. $f(-4) \times f(-2)<0$
d. $f(5)=0$
h. $f(x)>0$ over the interval $[4 ; 6]$.
$X I V$ - Find values b and c so that the parabola with equation $y=4 x^{2}-b x-c$ has a vertex at $(2,4)$?
$X V$ - Let C_{k} be the representative curve of a function k.
a. Determine the domain of definition of k.
b. Set up the table of variation of k.
c. Solve graphically:

1) $k(x)=0$.
2) $k(x)-3=0$
3) $k(x)>0$
4) $k(x)<0$
5) $k(x)<2$
6) $k(x) \geq 2$
7) $0 \leq k(x) \leq 1$.

XVI- f is a function defined on by: $f(x)=-x^{2}-2 x+4$.
a. Verify that $f(x)-5=-(x+1)^{2}$.
i. Deduce that f admits a maximum to be determined.
ii. Find the value of x where this maximum is reached.
b. Study the variation of f on each of the following intervals:
i. $I=]-\infty ;-1]$.
ii. $\quad J=[-1 ;+\infty[$
c. Set up the table of variation of f.
d. Sketch the graph of f.
\boldsymbol{e}. Solve both algebraically and graphically the inequality: $f(x) \geq-2 x$.
$\boldsymbol{X V I I}$-Consider in an orthonormal system of reference (O, \vec{i}, \vec{j}) the function f defined by its representative curve C_{f}.
a. Precise the domain of f, deduce its parity.
b. Set up table of variations of f.
c. Solve graphically and interpret the results of:
i. $f(x)=0$
ii. $f(x)>0$
d. Trace the straight line $(d): y=x$, then discuss graphically the inequality: $f(x)+x \leq 0$
e. The part of the curve C_{f} over the interval
 [$-4 ; 0$], is the translate of the curve C_{h} of a function h given by $h(x)=x^{2}$ with a translation vector \vec{V}.
i. Determine coordinates of \vec{V}.
ii. Find equation of h over $[-4 ; 0]$

XVIII- Let f be a function defined by $f(x)=x^{2}+2 x-3$
a. Prove that f admits a minimum -4 at a point $A\left(x_{A} ;-4\right)$ whose abscissa is to be determined.
b. Show that f is:
i. Strictly decreasing on the interval $]-\infty ;-1[$.
ii. Strictly increasing on the interval $[-1 ;+\infty[$.
c. Set up the table of variations of f.
d. Construct the representative curve C_{f} of f in the orthonormal reference of axes (O, \vec{i}, \vec{j}).
e. Solve algebraically then graphically:
i. $\quad f(x)=m$ such that $m \in \mathbb{R}$
ii. $|f(x)| \leq 2$.
f. Construct the graphs of:
i. $g(x)=f(x-1)$
ii. $\quad h(x)=f(x)+4$
iii. $k(x)=|f(x)|$
iv. $\quad p(x)=f(|x|)$.
$\boldsymbol{X I X}$ - The adjacent graph shows the representative curve C_{f} of a function f defined over the closed interval $[-4 ; 0]$ in an orthonormal system (O, \vec{i}, \vec{j}).
a. Determine $f(0), f(-1) \& f(-3)$.
b. Compare graphically $f(-\sqrt{2}) \& f(-\sqrt{3})$.
c. Solve graphically:
i. $f(x)=0$
iii. $0<f(x) \leq 3$
ii. $f(x)<0$
iv. $f(x)+3>-2 x$
d. Set up the table of variations of f.
\boldsymbol{e}. Find the numerical value s of $a, b \& c$ so that

$$
f(x)=a x^{2}+b x+c .
$$

f. Let $r(x)=m$, discuss according to the values of m the number of solutions of the equation $r(x)=f(x)$

g. Let g be a function defined over $[-3 ; 3]$ by $g(x)=x^{2}+2|x|$
i. Detect the parity of g.
ii. Write $g(x)$ without absolute value.
iii. Trace the representative curve of g on the above system.
h. Let h be a function defined by $h(x)=f(-x)$.

Deduce the curve of h and its domain.
$\boldsymbol{X} \boldsymbol{X}$ - Let f be a function defined by $f(x)=\frac{1}{2} x^{2}-2$ and (C) is its representative curve in an orthonormal reference $(O ; \vec{i} ; j)$.

1) Study the parity of f. Give a geometric interpretation.
2) a- Prove that f is increasing on $[0 ;+\infty[$. Deduce the variation of $f o n]-\infty ; 0]$.
b- Prove that f admits a minimum on IR to be determined
c- Complete the following table:

x	0	1	2	3	4
$\mathrm{f}(\mathrm{x})$					

3) Trace (C).
4) Let $g(x)=x-2$ and (d) is its curve.
a- Trace (d) in the same system of axes as (C).
b- Solve $f(x)=g(x)$.
c- Solve graphically: $\frac{1}{2} x^{2}<x$.
$\boldsymbol{X X I}$-Let g be a function defined, on \mathbb{R}, by: $\mathrm{g}(\mathrm{x})=(x-4)(x-2)$. Let $\left(\mathrm{C}_{\mathrm{g}}\right)$ be the representative curve of g in an orthonormal system ($0 ; \vec{i}, \vec{\jmath}$).
5) Find the common points between $\left(C_{g}\right)$ and x ' x.
6) Verify that $g(x)=(x-3)^{2}-1$.
7) Prove that g is decreasing on $]-\infty, 3]$ and that g is increasing on $[3,+\infty[$.
8) Set up the table of variations of g, then deduce the minimum of g.
9) Let h be a function defined, on \mathbb{R}, $b y$: $h(x)=x^{2}$.
a- Draw $\left(C_{h}\right)$, the representative curve of h, in an orthonormal system ($\left.0 ; \vec{i}, \vec{\jmath}\right)$.
b- Deduce the construction of $\left(\mathrm{C}_{\mathrm{g}}\right)$ after translating $\left(\mathrm{C}_{\mathrm{h}}\right)$ by a translation vector to be determined, then draw $\left(\mathrm{C}_{\mathrm{g}}\right)$.
XXII- Consider in the adjacent figure a curve (C) that represents a function f and a line (Δ) defined by: $g(x)=4 x$.
10) Find the domain of definition of f.
11) Find $f(1)$ and $f(0)$ graphically.
12) Solve graphically $f(x)=4$
13) Compare $f(1.5)$ and $f(2)$.(without finding their values)
14) Find a local minimum and a local maximum of f.
15) Show that f is neither even nor odd over the interval [-1;1]
16) Setup the table of variation of f.
17) Solve graphically:
a) $f(x)=g(x)$.
b) $f(x)-4 x \leq 0$
c) Deduce the domain of definition of the function
d) $\mathrm{r}(\mathrm{x})=\sqrt{4 x-f(x)}$.

XXIII- Consider the function $f: x \longrightarrow a x^{2}+b x$ and its curve C_{f} defined on the interval I.
Part-1: Existence and parity
a. Find the interval I for which f admits an image.
b. Discuss the parity of f.
c. Utilize C_{f} to prove that: $a=-1 \& b=2$.
d. Justify that the standard form of $f: f(x)=-(x-1)^{2}+1$

Part-2: Variation

1) Prove that: $f(\mathrm{x}) \leq 1$.
2) Deduce that f admits an extremum, and specify its nature.
3) Study variation of f over $] 1,2]$ and set up table of variations of f.

Part-3: Relative positions and translation
a) Use the graph to find equation of (d).
b) Solve graphically: $* f(x)>0$

$$
\text { * } f(x)<2 x-1
$$

c) Let g be the image of f by the translation vector $\vec{S}=\vec{i}-\vec{j}$:
i. Determine the equation of $g(x)$.
ii. Trace on your answer sheet C_{g}.
$\boldsymbol{X X I V}$ - In an orthonormal system $(O ; \vec{i}, \vec{j})$ consider the two vectors $\vec{S}(-x ; 2 x-3)$ and $\vec{N}(x ;-1)$, where $x \in \mathbb{R}$. Let $f: x \mapsto f(x)$ be a function defined by $f(x)=\vec{S} \cdot \vec{N}$.
a. Calculate $f(x)$ and find with justification the domain of f.
b. Show that f admits a maximum 4 at a value of x to be determined.
c. Study the variation of f over the intervals:
i. $]-\infty ;-1]$.
ii. $[-1 ;+\infty]$.
d. Set up table of variations of f, then draw C_{f} the representative curve of f.
e. Determine graphically values of x for which vectors $\vec{S} \& \vec{N}$:
i. Are orthogonal.
ii. Form an acute angle.
flastering problems

Chapter	Exercises	Pages
CH-: Functions	$6,7,9 \& 12$	349 to 351
	22	356
	$23 \& 24$	357
	25	358

