Lycée Des Arts	Mathematics	9 th -Grade
Name:	"Similar Triangles"	W.S-11.

G

- *I* Consider a circle (*C*) of diameter[*AB*], center *O* and radius 4cm. let *G* be a point of [*OB*]. The perpendicular to (*AB*) at *G* cuts (*C*) in two points *M* and *N*. the line (*MO*) cuts again the circle (*C*) in point *P*.
 - *a*. Draw a figure.
 - b. Prove that the two triangles MGB and MAP are similar and deduce that: $MA \times MB = 8MG$.
 - c. Let *E* be the midpoint of [*MA*].
 - *i*. Prove that the two lines (*OE*) and (*BM*) are parallel.
 - *ii.* Find the locus of the point *E* as *G* moves on [*OB*].
- *II* Consider that the two circles C(O;3cm)&C'(O';6cm) are tangent externally at point *A*. Let *B* be a point of (*C*') diametrically opposite to *A*. The tangent to(*C*), drawn from *B*, cuts (*C*') at *D*. Let *I* be the point of intersection of the drawn tangent with(*C*).
 - a. Draw a figure. Compute BI.
 - b. Compare the triangles ABD and BOI, then write ratio of similarity.
 - c. Calculate the measure of the sides AD and BD.
 - d. Calculate the area of triangle ABD, deduce area of triangle BOI.
- *III* Through a vertex of a parm *ABCD*, draw a secant to cut [*BD*] at point *E* and intersect the lines [*BC*] and (*CD*) at points *F* and *G* respectively.
 - a. Prove that triangles ADE and BEF are similar, and write the ratio of similitude.
 - b. Prove that triangles *DEG* and *ABE* are similar, and write the ratio of similitude.
 - *c*. Show that: $AE^2 = EF \times EG$.
 - d. Demonstrate that the product: $BF \times DG$ is constant.
- *IV- ABC* is an isosceles triangle of vertex *C* inscribed in a circle (*S*). Through point *C* draw a ray [*Cx*) that intersects [*AB*] at *D* and (*S*) at *E*. Show that: $AC^2 = CD \times CE$.
- V- Consider the circle C(O; 4cm). [AE] is a fixed chord and H is a variable point on [AE]. The perpendicular bisector of [HE] cuts the circle in B and C and (AE) in F. The line (CH) cuts (AB) in K.

1. Find the nature of triangle *CEH*.

- 2. *a*-Show that: $C\hat{H}E = A\hat{B}C$.
 - *b* Show that triangles *CFH* and *CBK* are similar. Write their ratio of similarity.

c- Deduce that:
$$\frac{CK}{CB} = \frac{CF}{CE}$$
.

- 3. Use the previous part to show that triangles *BCE* and *CFK* are similar.
- *VI* Given the two similar triangles ABC & DEF with AB = 5cm, DE = 7cm and the area of triangle *ABC* is $12cm^2$. Find the area of the triangle *DEF*.

VII- Consider a triangle *ABC* such that: AB = 2AC. Let *D* be a point on [*AC*) where AD = 2AB*a*. Prove that the two *ABC* & *ABD* are similar.

- b. Show that $AB^2 = AC \times AD$.
- c. Evaluate the ratio: $\frac{Area of \Delta ABD}{Area of \Delta ABC}.$
- *VIII* Draw a ray [Ax) on which we construct a semi-circle (c) of center O, diameter [AB] and radius r. I is a point of [Bx) such that BI < r. The tangent to (c) through point I intersects the circle at point M.
 - a. Prove that the triangles *IBM* & *AMI* are similar, deduce that $IM^2 = IB \times IA$.
 - *b*. The perpendicular drawn from *O* to (*AB*) meets (*BM*) at *K* and intersects (*AM*) at *H*. The straight-line (*BH*) cuts (*AK*) at *J*. Show that *J* belongs to (*c*).
 - *i*. Show that triangles BHO & AOK are similar and deduce the value of $OH \times OK$ in terms of *r*.
 - *ii.* Deduce that $OM^2 = OH \times OK$.
 - c. Determine the locus of G the midpoint of [KB], as point I varies on [Bx).
- *IX* Consider a circle (*C*) of center *O* and radius *R*, and (*D*) is any line exterior to (*C*). Let *M* be a variable point on (*D*). Construct the rays [*MA*) and [*MB*) the two tangents drawn from *M* to (*C*). *E* is the orthogonal projection of *O* on (*D*). [*AB*] cuts (*MO*) in *F* and (*OE*) in *I*.
 - a. Determine the relative position of (OM) with respect to [AB].
 - b. Prove that the poi
 - c. nts M, E, I and F belong to the same circle whose diameter is to be determined.
 - *d*. Show that triangles *AFO* and *AMO* are similar and deduce that $OF \times OM = R^2$.
 - e. Determine the locus of F as M varies on (D).
- X- Consider a circle (s) of center O with diameter AB = 8cm. The perpendicular at O to (AB) intersects (s) at point C. Let I be the midpoint of [OA]. The line (CI) cuts (s) at M.
 - 1. Show that: $CI = 2\sqrt{5}$ & $CB = 4\sqrt{2}$.
 - 2. a) Show that triangles *CBI* and *AMI* are similar and write their ratio of similarity.

b) Deduce that
$$MI = \frac{6\sqrt{5}}{5} \& AM = \frac{4\sqrt{10}}{5}$$

c) Verify that: $CM = \frac{16\sqrt{5}}{5}$.

3. Let J be the midpoint of [CB].

a. Prove that
$$\frac{AM}{BJ} = \frac{CM}{AB}$$

- b. Show that triangles ABJ and ACM are similar. Write homologous angles.
- c. Compare the angles $\hat{ACM} \& \hat{ABM}$. Deduce that (AJ) is parallel to (MB).
- *XI* Refer to the figure below to find the ratio: $\frac{Area_{\Delta ABH}}{Area_{\Delta ABC}}$.

Math – Supplementary Sheet – Grade 9. April 8, 2017^{H}

24

16

- *XII* In the figure below (*c*) is a circle of center *O* and diameter AB = 12cm. Let *M* be the midpoint of [*AO*] and (*r*) be another circle of diameter [MO].
 - a. Trace on the same figure a line through M that intersects (c) in two points E & F and (r) at N. Designate by H the orthogonal projection of B on (EF).
 - b. Show that (ON) and (BH) are parallel.
 - c. If lines (*BH*) and (*AN*) intersect at *K*. Deduce that: $\frac{ON}{BK} = \frac{1}{2}$.
 - *d*. Verify that: $\frac{OM}{BO} = \frac{1}{2}$.
 - e. Show that the two triangles OMN and BOK are similar.

Deduce their equal angles.

- XIII-Let O be the midpoint of segment AB = 12cm and D be a point on the perpendicular bisector of [AB] such that OD = 3cm. C is the orthogonal projection of B on (AD).
 - 1. Draw a figure to a real scale, and then compute the exact value of [AD].
 - 2. Prove that the triangles AOD & ACB are similar. Deduce the length [AC] & [BC].
 - 3. Consider *E* to be the midpoint of [*AC*], and (*S*) be the circle of center *O* and radius *OE*.*a.* Show that (AC) is the tangent to (S) at E.
 - b. Calculate the radius of (S). Show that $\vec{OE} = \frac{1}{2}\vec{BC}$.

XIV-Refer to the figure to find the ratio: $\frac{Area_{\Delta BEF}}{Area_{\Delta CDF}}$.

XV- Find area of the triangle ABC, if the points M, N & P represent the respective midpoints of [AB], [AC] & [BC] and area of triangle MNP is $50cm^2$.

