9 Lycée Des Arts	Mathematics	$9^{\text {th_Grade }}$
Name:	"Similar Triangles"	W.S-11.

I - Consider a circle (C) of diameter $[A B]$, center O and radius 4 cm . let G be a point of $[O B]$. The perpendicular to $(A B)$ at G cuts (C) in two points M and N. the line ($M O$) cuts again the circle (C) in point P.
a. Draw a figure.
b. Prove that the two triangles $M G B$ and $M A P$ are similar and deduce that: $M A \times M B=8 M G$.
c. Let E be the midpoint of [MA].
i. Prove that the two lines $(O E)$ and $(B M)$ are parallel.
ii. Find the locus of the point E as G moves on $[O B]$.

II- Consider that the two circles $C(O ; 3 \mathrm{~cm}) \& C^{\prime}\left(O^{\prime} ; 6 \mathrm{~cm}\right)$ are tangent externally at point A. Let B be a point of $\left(C^{\prime}\right)$ diametrically opposite to A. The tangent to (C), drawn from B, cuts $\left(C^{\prime}\right)$ at D. Let I be the point of intersection of the drawn tangent with (C).
a. Draw a figure. Compute $B I$.
b. Compare the triangles $A B D$ and $B O I$, then write ratio of similarity.
c. Calculate the measure of the sides $A D$ and $B D$.
d. Calculate the area of triangle $A B D$, deduce area of triangle $B O I$.

III- Through a vertex of a parm $A B C D$, draw a secant to cut $[B D]$ at point E and intersect the lines $[B C]$ and $(C D)$ at points F and G respectively.
a. Prove that triangles $A D E$ and $B E F$ are similar, and write the ratio of similitude.
b. Prove that triangles $D E G$ and $A B E$ are similar, and write the ratio of similitude.
c. Show that: $A E^{2}=E F \times E G$.
d. Demonstrate that the product: $B F \times D G$ is constant.
$I V-A B C$ is an isosceles triangle of vertex C inscribed in a circle (S). Through point C draw a ray $[C x)$ that intersects $[A B]$ at D and (S) at E.
Show that: $A C^{2}=C D \times C E$.
V - Consider the circle $C(O ; 4 \mathrm{~cm})$. $[A E]$ is a fixed chord and H is a variable point on $[A E]$. The perpendicular bisector of $[H E]$ cuts the circle in B and C and $(A E)$ in F. The line ($C H$) cuts $(A B)$ in K.

1. Find the nature of triangle $C E H$.
2. a - Show that: $C \hat{H} E=A \hat{B} C$.
b - Show that triangles $C F H$ and $C B K$ are similar. Write their ratio of similarity.
c - Deduce that: $\frac{C K}{C B}=\frac{C F}{C E}$.
3. Use the previous part to show that triangles $B C E$ and $C F K$ are similar.

VI- Given the two similar triangles $A B C \& D E F$ with $A B=5 \mathrm{~cm}, D E=7 \mathrm{~cm}$ and the area of triangle $A B C$ is $12 \mathrm{~cm}^{2}$. Find the area of the triangle $D E F$.

VII- Consider a triangle $A B C$ such that: $A B=2 A C$. Let D be a point on $[A C)$ where $A D=2 A B$
a. Prove that the two $A B C \& A B D$ are similar.
b. Show that $A B^{2}=A C \times A D$.
c. Evaluate the ratio: $\frac{\text { Areaof } \triangle A B D}{\text { Areaof } \triangle A B C}$.

VIII- Draw a ray $[A x)$ on which we construct a semi-circle (c) of center O, diameter $[A B]$ and radius r. I is a point of $[B x)$ such that $B I<r$. The tangent to (c) through point I intersects the circle at point M.
a. Prove that the triangles $I B M \& A M I$ are similar, deduce that $I M^{2}=I B \times I A$.
b. The perpendicular drawn from O to $(A B)$ meets $(B M)$ at K and intersects $(A M)$ at H. The straight-line $(B H)$ cuts $(A K)$ at J. Show that J belongs to (c).
i. Show that triangles $B H O \& A O K$ are similar and deduce the value of $\mathrm{OH} \times \mathrm{OK}$ in terms of \boldsymbol{r}.
ii. Deduce that $O M^{2}=O H \times O K$.
c. Determine the locus of G the midpoint of $[K B]$, as point I varies on $[B x)$.
$I X$ - Consider a circle (C) of center O and radius R, and (D) is any line exterior to (C). Let M be a variable point on (D). Construct the rays $[M A)$ and $[M B)$ the two tangents drawn from M to $(C) . E$ is the orthogonal projection of O on (D). $[A B]$ cuts $(M O)$ in F and $(O E)$ in I.
a. Determine the relative position of $(O M)$ with respect to $[A B]$.
b. Prove that the poi
c. nts M, E, I and F belong to the same circle whose diameter is to be determined.
d. Show that triangles $A F O$ and $A M O$ are similar and deduce that $O F \times O M=R^{2}$.
e. Determine the locus of F as M varies on (D).
X - Consider a circle (s) of center O with diameter $A B=8 \mathrm{~cm}$. The perpendicular at O to $(A B)$ intersects (s) at point C. Let I be the midpoint of $[O A]$. The line $(C I)$ cuts (s) at M.

1. Show that: $C I=2 \sqrt{5} \& C B=4 \sqrt{2}$.
2. a) Show that triangles $C B I$ and $A M I$ are similar and write their ratio of similarity.
b) Deduce that $M I=\frac{6 \sqrt{5}}{5} \& A M=\frac{4 \sqrt{10}}{5}$.
c) Verify that: $C M=\frac{16 \sqrt{5}}{5}$.
3. Let J be the midpoint of [CB].
a. Prove that $\frac{A M}{B J}=\frac{C M}{A B}$.
b. Show that triangles $A B J$ and $A C M$ are similar. Write homologous angles.
c. Compare the angles $A \hat{C} M \& A \hat{B} M$. Deduce that ($A J$) is parallel to ($M B$).

XI- Refer to the figure below to find the ratio: $\frac{\text { Area }_{\triangle A B H}}{\text { Area }_{\triangle A B C}}$.

XII- In the figure below (c) is a circle of center O and diameter $A B=12 \mathrm{~cm}$. Let M be the midpoint of $[A O]$ and (r) be another circle of diameter [MO].
a. Trace on the same figure a line through M that intersects (c) in two points $E \& F$ and (r) at N. Designate by H the orthogonal projection of B on $(E F)$.
b. Show that $(O N)$ and $(B H)$ are parallel.
c. If lines $(B H)$ and $(A N)$ intersect at K. Deduce that: $\frac{O N}{B K}=\frac{1}{2}$.
d. Verify that: $\frac{O M}{B O}=\frac{1}{2}$.
e. Show that the two triangles $O M N$ and $B O K$ are similar. Deduce their equal angles.

XIII-Let O be the midpoint of segment $A B=12 \mathrm{~cm}$ and D be a point on the perpendicular bisector of $[A B]$ such that $O D=3 \mathrm{~cm}$. C is the orthogonal projection of B on (AD).

1. Draw a figure to a real scale, and then compute the exact value of $[A D]$.
2. Prove that the triangles $A O D \& A C B$ are similar. Deduce the length $[A C] \&[B C]$.
3. Consider E to be the midpoint of $[A C]$, and (S) be the circle of center O and radius $O E$.
a. Show that (AC) is the tangent to (S) at E .
b. Calculate the radius of (S). Show that $\overrightarrow{O E}=\frac{1}{2} \overrightarrow{B C}$.

XIV-Refer to the figure to find the ratio: $\frac{\text { Area }_{\triangle B E F}}{\text { Area } a_{\triangle C D F}}$.

$X V$ - Find area of the triangle $A B C$, if the points $M, N \& P$ represent the respective midpoints of $[A B],[A C] \&[B C]$ and area of triangle $M N P$ is
 $50 \mathrm{~cm}^{2}$.

