I- Consider the expression: $A=\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)^{2}+\left(\frac{\sqrt{6}+\sqrt{2}}{4}\right)^{2}$
a. Show that $A=1$.
b. Suppose that $\sin x=\frac{\sqrt{6}-\sqrt{2}}{4}$ where x is an acute angle. Deduce the value of the corresponding co function $(\cos x)$.
c. Prove that $\tan x=2-\sqrt{3}$.

II- Consider the adjacent right triangle:
a. Prove the following identity: $1+\tan ^{2} \alpha=\frac{1}{\cos ^{2} \alpha}$.
b. Assume that $\tan \alpha=\frac{3}{4}$, then compute by two different ways the value of $\cos \alpha$.

III- $R N K$ is a semi-equilateral triangle right at N, such that $N \hat{R} K=60^{\circ}$ and $R N=\sqrt{3}$.
a. Show that the exact value of $R K$ is $2 \sqrt{3}$, give its approximate value to the nearest millimeter by default.
b. Compute the exact value of the segment $N K$. (Use two different ways).
IV- Consider the expression: $R=\frac{1+\tan ^{2} \alpha}{1-\tan ^{2} \alpha} \quad$ and $\quad N=\frac{1}{1-2 \sin ^{2} \alpha}$.
a. Prove that: $R=N$.
b. Deduce, the value of $\sin \alpha$ if $\tan \alpha=2$.
V - The following parts are independent"
a. Construct the equation of line (d) forming an angle α with the positive x-axis and passing through the point $A(-1 ; 4)$.
b. In an orthonormal system of axes, let $M(m-1, n+2)$ be any point on the straight line $(D): y=3 x-11$, which makes an acute angle α with the positive x-axis such that $\tan \alpha=m+2 n$. Determine the values of $m \& n$.
VI- Answer in the following order:
a. Find numerical value of α, to the nearest degree.
b. Determine the exact measure of side the $B C$.
c. Compute the exact area of the triangle $A B C$

d. Without finding h, use $\cos \alpha$ to deduce the numerical value of y.
VII- In the right triangle $A B C$ of hypotenuse $B C$ and $\sin \hat{B}=0.8$.
a. Calculate $\cos \hat{B} \& \tan \hat{B}$.
b. If $B C=15 \mathrm{~cm}$, then find the length of $A B \& A C$.

VIII- Consider the system: $\left\{\begin{array}{l}6 \cos \alpha-4 \sqrt{2} \cos \beta=-1 \\ 2 \cos \alpha+\sqrt{2} \cos \beta=2\end{array}\right.$
a) Find the value of $\cos \alpha$ and $\cos \beta$.
b) Deduce the values of the acute angles α and β.
$\boldsymbol{I X}$ - Consider a triangle $I J K$ right at K and that $J \hat{I} K=15^{\circ}$.
a. Calculate the expression $A=(2+\sqrt{3}) \times(2-\sqrt{3})$.
b. Find the exact value of angle $I \hat{J} K$.
c. Knowing that $\tan \hat{I}=2-\sqrt{3} \& A=1$ Deduce the exact value of $\tan \hat{J}$.
X - In a triangle $A B C$ right at A.
i. Compare: $\cos \hat{B} \& \sin \hat{C}$.

$$
\sin \hat{B} \& \cos \hat{C}
$$

ii. Reduce: $a=\cos 10^{\circ}-\sin 80^{\circ}$.

$$
\begin{aligned}
& b=\sin ^{2} 15+\sin ^{2} 75=1 \\
& c=\left(\cos 35^{\circ}-\sin 55^{\circ}\right)+\left(\sin 35^{\circ}-\cos 55^{\circ}\right)
\end{aligned}
$$

XI- Prove the following identities:
a. $(\sin x+\cos x)^{2}-(\sin x-\cos x)^{2}=4 \sin x \cdot \cos x$.
b. $\cos ^{2} \alpha-\sin ^{2} \alpha=2 \cos ^{2} \alpha-1$.
c. $\cos ^{4} a-\sin ^{4} a=\cos ^{2} a-\sin ^{2} a$.
d. $\sin ^{4} a+\cos ^{4} a=1-2 \sin ^{2} a \cdot \cos ^{2} a$.
e. $\frac{1-\sin y}{\cos y}=\frac{\cos y}{1+\sin y}$.
f. $\sin ^{4} a-\cos ^{4} a+2 \cos ^{2} a=1$.
g. $\frac{1-\tan ^{2} \alpha}{1+\tan ^{2} \alpha}=2 \cos ^{2} \alpha-1$.

XII- Consider the following figure:
a. Find $\cos \alpha \& \cos \beta$ in 2 different triangles.

Deduce that $\left\{\begin{array}{l}A C^{2}=C H \times C B \\ A B^{2}=B H \times B C\end{array}\right.$.
b. Prove that $\alpha=H \hat{A} B$ and $\beta=C \hat{A} H$

c. Find $\tan \alpha$ in 2 different triangles to show that $A H^{2}=H B \times H C$.

XIII- Consider the triangle $A B C$:
a. Prove that $h=b \sin \alpha$.
b. Find $\sin \beta$ in terms of h.
c. Verify that $\frac{c}{\sin \alpha}=\frac{b}{\sin \beta}$.

$\boldsymbol{X I V}$ - Given triangle ABC such that:
$A B=4 \mathrm{~cm}, \hat{B}=40^{\circ}$ and $\hat{C}=35^{\circ}$; where $[A H]$ is a height relative to $[B C]$.

1) Compute the measure of all missing lengths.
2) Calculate perimeter and area of triangle $A B C$.

$X V-\alpha$ is the measure of an acute angle such that $\cos \alpha=\mathbf{m}$.
1. Justify which of the following propositions below is correct about \mathbf{m} :
a) $m=\frac{4 \sqrt{2}}{9}$
b) $m=-\frac{4 \sqrt{2}}{9}$
c) $m=\frac{9}{4 \sqrt{2}}$
2. Deduce the numerical values of $\sin (\alpha)$ and $\tan (\alpha)$.
3. Without using the calculator, show that: $\mathrm{A}=\frac{2\left(\cos 60^{\circ}+\sin 45^{\circ}\right)}{\tan 68^{\circ} \times \tan 22^{\circ}} \times(\sqrt{6}-\sqrt{3})$ and $\mathrm{B}=\frac{\sqrt{3}}{3}$ are reciprocals
XVI- The adjacent figure, We suppose that: $a=\cos \hat{\mathrm{A}}, b=\cos \hat{\mathrm{B}}, c=\cos \hat{\mathrm{C}}$ and $\cos \left(75^{\circ}\right)=x$.
And we admit that $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c} verify the relation: $a^{2}+b^{2}+c^{2}+2 a b c=1$.
1) Show that: $4 x^{2}+2 x \sqrt{2}-1=0$.
2) Consider the real numbers: $\mathrm{U}=\frac{\sqrt{6}-\sqrt{2}}{4}$ and $\mathrm{V}=\frac{-\sqrt{6}-\sqrt{2}}{4}$.

a. Verify that U and V are two solutions of the equation: $4 x^{2}+2 x \sqrt{2}-1=0$.
b. Deduce the exact value of $\cos \left(75^{\circ}\right)=x$ and then deduce $\sin \left(75^{\circ}\right)$ and $\sin \left(15^{\circ}\right)$.
3) a) Compare the numbers: $\frac{\sqrt{6}+\sqrt{2}}{4}$ and $\frac{\sqrt{2+\sqrt{3}}}{2}$.
b) Deduce that: $\tan \left(75^{\circ}\right)=2+\sqrt{3}$, and then calculate $\cot \left(75^{\circ}\right)$.
