Lycée Des Arts Name:

I- Consider the expression:
$$A = \left(\frac{\sqrt{6} - \sqrt{2}}{4}\right)^2 + \left(\frac{\sqrt{6} + \sqrt{2}}{4}\right)^2$$

- *a*. Show that A = 1.
- b. Suppose that $\sin x = \frac{\sqrt{6} \sqrt{2}}{4}$ where *x* is an acute angle. Deduce the value of the corresponding co function($\cos x$).
- c. Prove that $\tan x = 2 \sqrt{3}$.
- *II-* Consider the adjacent right triangle:

a. Prove the following identity:
$$1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha}$$

- b. Assume that $\tan \alpha = \frac{3}{4}$, then compute by two different ways the value of $\cos \alpha$.
- III- RNK is a semi-equilateral triangle right at N, such that $N\hat{R}K = 60^{\circ}$ and $RN = \sqrt{3}$.
 - a. Show that the exact value of RK is $2\sqrt{3}$, give its approximate value to the nearest *millimeter* by default.
 - b. Compute the exact value of the segment NK. (Use two different ways).

IV- Consider the expression:
$$R = \frac{1 + \tan^2 \alpha}{1 - \tan^2 \alpha}$$
 and $N = \frac{1}{1 - 2\sin^2 \alpha}$.

- *a.* Prove that: R = N.
- b. Deduce, the value of $\sin \alpha$ if $\tan \alpha = 2$.
- *V* The following parts are independent"
 - a. Construct the equation of line (d) forming an angle α with the positive x axis and passing through the point A(-1;4).
 - *b*. In an orthonormal system of axes, let M(m-1, n+2) be any point on the straight line (D): y = 3x-11, which makes an acute angle α with the positive x axis such that $\tan \alpha = m + 2n$. Determine the values of m & n.
- *VI* Answer in the following order:
 - a. Find numerical value of α , to the nearest degree.
 - *b*. Determine the exact measure of side the *BC*.
 - *c*. Compute the exact area of the triangle *ABC*
 - d. Without finding h, use $\cos \alpha$ to deduce the numerical value of y.
- *VII* In the right triangle *ABC* of hypotenuse *BC* and $\sin \hat{B} = 0.8$.
 - *a*. Calculate $\cos \hat{B} \, \& \, \tan \hat{B}$.

b. If BC = 15cm, then find the length of AB & AC.

VIII- Consider the system: $\begin{cases} 6\cos\alpha - 4\sqrt{2}\cos\beta = -1\\ 2\cos\alpha + \sqrt{2}\cos\beta = 2 \end{cases}$ a) Find the value of $\cos \alpha$ and $\cos \beta$. b) Deduce the values of the acute angles α and β . Consider a triangle *IJK* right at *K* and that $J\hat{I}K = 15^{\circ}$. IX*a*. Calculate the expression $A = (2 + \sqrt{3}) \times (2 - \sqrt{3})$ b. Find the exact value of angle $I\hat{J}K$. c. Knowing that $\tan \hat{I} = 2 - \sqrt{3} \& A = 1$ Deduce the exact value of $\tan \hat{J}$. In a triangle *ABC* right at *A*. X*i*. Compare: $\cos \hat{B} \,\&\, \sin \hat{C}$. $\sin \hat{B} \ll \cos \hat{C}$. *ii.* Reduce: $a = \cos 10^{\circ} - \sin 80^{\circ}$. $b = \sin^2 15 + \sin^2 75 = 1.$ $c = (\cos 35^{\circ} - \sin 55^{\circ}) + (\sin 35^{\circ} - \cos 55^{\circ}).$ Prove the following identities: XI $e. \ \frac{1-\sin y}{\cos y} = \frac{\cos y}{1+\sin y}.$ a. $(\sin x + \cos x)^2 - (\sin x - \cos x)^2 = 4\sin x \cdot \cos x$. b. $\cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1$. f. $\sin^4 a - \cos^4 a + 2\cos^2 a = 1$. g. $\frac{1-\tan^2\alpha}{1+\tan^2\alpha} = 2\cos^2\alpha - 1.$ c. $\cos^4 a - \sin^4 a = \cos^2 a - \sin^2 a$. d. $\sin^4 a + \cos^4 a = 1 - 2\sin^2 a \cdot \cos^2 a$. **XII-** Consider the following figure: a. Find $\cos \alpha \& \cos \beta$ in 2 different triangles. Deduce that $\begin{cases} AC^2 = CH \times CB. \\ AB^2 = BH \times BC. \end{cases}$ b. Prove that $\alpha = H\hat{A}B$ and $\beta = C\hat{A}H$ c. Find $\tan \alpha$ in 2 different triangles to show that $AH^2 = HB \times HC$. **XIII-** Consider the triangle ABC: a. Prove that $h = b \sin \alpha$. b. Find sin β in terms of h. h c. Verify that $\frac{c}{\sin \alpha} = \frac{b}{\sin \beta}$. B

Math Work sheet - Grade-9. April 25, 2017

Page 2 of 3

XIV- Given triangle ABC such that:

AB = 4cm, $\hat{B} = 40^{\circ}$ and $\hat{C} = 35^{\circ}$; where [AH] is a height relative to [BC].

- 1) Compute the measure of all missing lengths.
- 2) Calculate perimeter and area of triangle *ABC*.

- *XV* α is the measure of an acute angle such that $\cos \alpha = \mathbf{m}$.
 - 1. Justify which of the following propositions below is correct about m:

a)
$$m = \frac{4\sqrt{2}}{9}$$
 b) $m = -\frac{4\sqrt{2}}{9}$ c) $m = \frac{9}{4\sqrt{2}}$

- 2. Deduce the numerical values of $sin(\alpha)$ and $tan(\alpha)$.
- 3. Without using the calculator, show that: $A = \frac{2(\cos 60^\circ + \sin 45^\circ)}{\tan 68^\circ \times \tan 22^\circ} \times (\sqrt{6} \sqrt{3})$ and $B = \frac{\sqrt{3}}{3}$ are reciprocals

XVI- The adjacent figure, We suppose that: $a = \cos \hat{A}$, $b = \cos \hat{B}$, $c = \cos \hat{C}$ and $\cos(75^{\circ}) = x$.

And we admit that *a*, *b* and *c* verify the relation: $a^2 + b^2 + c^2 + 2abc = 1$.

1) Show that: $4x^2 + 2x\sqrt{2} - 1 = 0$.

2) Consider the real numbers: $U = \frac{\sqrt{6} - \sqrt{2}}{4}$ and $V = \frac{-\sqrt{6} - \sqrt{2}}{4}$.

- *a*. Verify that U and V are two solutions of the equation: $4x^2 + 2x\sqrt{2} 1 = 0$.
- b. Deduce the <u>exact value of</u> $\cos(75^\circ) = x$ and then deduce $\sin(75^\circ)$ and $\sin(15^\circ)$.
- 3) a) Compare the numbers: $\frac{\sqrt{6} + \sqrt{2}}{4}$ and $\frac{\sqrt{2 + \sqrt{3}}}{2}$.
 - b) Deduce that: $tan(75^{\circ}) = 2 + \sqrt{3}$, and then calculate $cot(75^{\circ})$.

45%