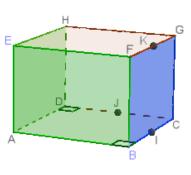
Al Mahdi High Schools (Al-Hadath) Name: Mathematics

10th-Grade

"Space Geometry"


W.S-13

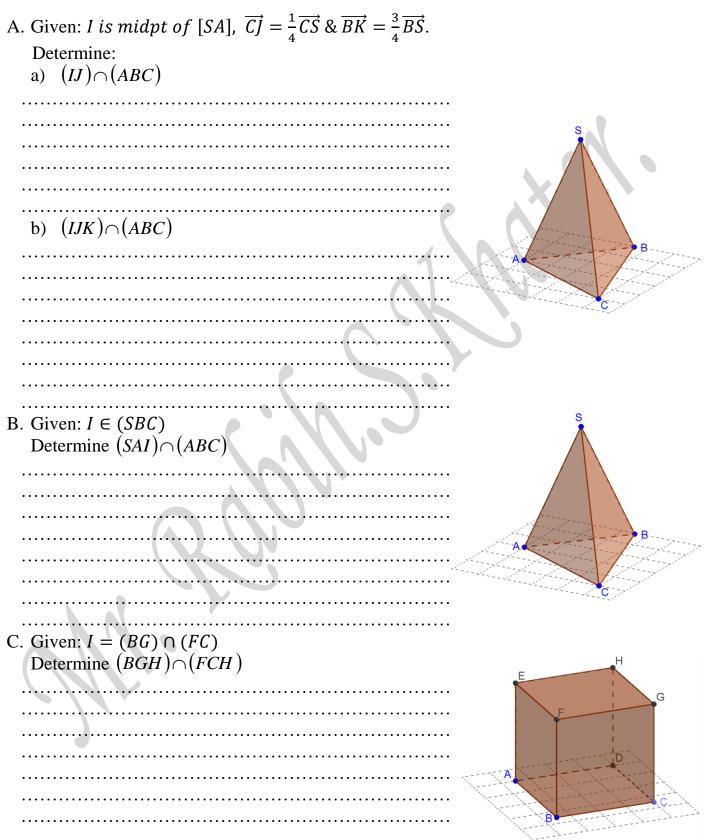
- *I* TRUE FALSE questions:
- **A-**

		True	False
1-	In a plane, two disjoint straight-lines are parallel		
2-	Two straight-lines parallel to the same plane are parallel		
3-	If <i>P</i> and <i>Q</i> are any two parallel planes, then every straight-line in the first is parallel to the second	XO	
4-	In Cavalier's perspective, two segments of equal lengths are represented by segments having equal lengths		
5-	In Cavalier's perspective, a right angle is always represented by a right angle	3	

B- If ABCDEFGH is a cube, where I, J, K are the midpoints of [BC], [CD] and [FG] respectively, then

		True	False
1-	(<i>IJK</i>) and (<i>AEH</i>) are parallel		
2-	(IJ) and (BD) are parallel		
3-	(AC) and (EF) are parallel		
4-	(<i>IK</i>) and (<i>GH</i>) are skew		
5-	(<i>IK</i>) and (<i>HD</i>) are non-coplanar		
6-	(IJK) and (EFG) have only one		
	point in common		
7-	(IJ) and (AF) are parallel		
8-	(EG) and (AB) are parallel		
9-	(<i>IK</i>) and (<i>AE</i>) are skew		
10-	(<i>IK</i>) and (<i>CD</i>) are non-coplanar		

C-


		True	False
1-	In space, two disjoint straight-lines are parallel		
2-	Two straight-lines parallel to a third straight-line are parallel		
3-	If a straight-line is parallel to a plane, then it is parallel to every		
	straight-line in this plane		
4-	In Cavalier's perspective, a square is always represented by a		
	square		
5-	In Cavalier's perspective, two parallel straight-lines are		
	represented by parallel straight-lines		

- *D* Answer by true or false and justify your answer.
 - 1) If A & B are two points of a plane (P), then every point M of the straight-line (AB) belongs to (P).
 - 2) A point and a straight-line always determine a plane.
 - 3) If three points are in two planes at the same time, then they are collinear.
- *II* Consider the pyramid *SABCD*, whose base is the parallelogram *ABCD* of center O. Let I & J be the respective midpoints of [SB]&[SC].
 - 1. Determine with justification the following intersections of the plane:
 - a. (ABC) with the plane (ACD).
 - b. (*BED*) with the straight line (AO).
 - c. (ABD) with the plane (AEC).
 - 2. a) Show that the straight lines (IJ)&(ED) are parallel.
 - b) Deduce the intersection of the planes (ABC) & (EID).
 - 3. Show that the straight line (IJ) is parallel to the plane (BCD).
- *III* Let *ABCDEFGH* be a rectangular prism and *I* and *J* be the centers of the faces *ADHE* and *BCGF* respectively.
 - 1) What are, graphically, the straight-lines parallel to (IJ)?
 - 2) Indicate a straight-line which is non-coplanar with (IJ).
 - 3) What is the relative position of the planes:
 - a) (ABF) and (AIJ)? c) (BCG) and (CFI)?
 - b) (*ABF*) and (*HGC*)?
 - 4) Indicate two secant planes parallel to (*IJ*).
 - 5) Indicate two straight-lines parallel to plane (*EFC*).
 - 6) What is the relative position of (IJ) with respect to plane (EDC)?
- *IV* Let *ABCD* be a tetrahedron. *I* is a point of [BD] such that $\overrightarrow{BI} = \frac{3}{4} \overrightarrow{BD}$, *J* is the midpoint of

[AC] and K is a point of [AD] such that $\overrightarrow{AK} = \frac{2}{3}\overrightarrow{AD}$.

- 1) Draw the figure and locate I, J and K.
- 2) Find the intersection between the two planes (*AIJ*) and (*ACD*) and the two planes (*AIJ*) and (*BCD*). (Justify your answer)
- 3) Construct the intersection between the two planes (*IJK*) & (*BCD*) and the two planes (*IJK*) and (*ABC*). (Justify your answer)
- *V* Consider a tetrahedron *ABCD*. Let *I*, *J* and *K* be three points on]AB[,]AC[&]AD[respectively. (*IJ*) cuts (*BC*) in *E* and (*JK*) cuts (*CD*) in *F*.
 - 1) If (IK) cuts (BD) in G, show that the points E, F and G are collinear.
 - 2) If (IK) is parallel to (BD), show that (EF) is parallel to (BD).
 - 3) Precise the intersection between the two planes (ABD) and (AEF).

VI- Construct with justification the intersections in each of the following cases:

	Question	Answer	Construction
Given: $I \in (SCD)$ P is the midpt of $[SA]$, $\overrightarrow{CJ} = \frac{1}{4}\overrightarrow{CS}$	1) $(SAI) \cap (ABC)$		
	2) $(SAB) \cap (SCD)$		A
	3) $(SAD) \cap (SBC)$		
	$4) (PJ) \cap (ABC)$		

Mastering problems				
Chapter	Exercises	Pages		
	2,3 & 4	408		
CH-: Space Geometry	6	409		
	11&14	411		

Mathematics. W.S-13 Space Geometry