I- Answer by true or false with justification.

\mathcal{N} No.	Statement	\mathcal{T} / F	Justification
1-	The favorite teachers in your school form a set.		
2-	The classes in your school form a set.		
3-	$a=\{a\}$		
4-	$\phi=\{0\}$		
5-	$\left.\begin{array}{l}\text { If } A=\{x \mid 3 x=9 \& x \in \mathfrak{R}\} \\ \text { and } B=\left\{x \mid x^{2}=9 \& x \in \mathfrak{R}\right\}\end{array}\right\}$ then,$A=B$.		
6-	$\phi \subset\{a, b\}$		
7-	If $J=\{i,\{p, n\}, r\}$, then Card $(p(J))=2^{4}$.		
8-	If $N=\{a,\{b, c\}, d\}$, then $\{b, c\} \subset N$.		

II- Choose with justification the only correct answer:

\mathcal{N} o.	Question	Response		
		\mathcal{A}	B	C
1.	If A and B are two subsets of a set E such that $A \cap B=\{a\}$ where $\operatorname{Card}(A)=2$, $\operatorname{Card}(B)=3$ and $\bar{A}=\{2,3, b\}$ then $B=$	$B \in\{a, 2\}$	$B=\{2,3, b\}$	$B=\{a, 3, b\}$
2.	If A and B are two subsets of a set E such that $\mathrm{A} \subset \mathrm{B}$ then $(\mathrm{A} \cup \mathrm{B}) \cap(\overline{\mathrm{A}} \cup \mathrm{E})=$	B	A	E
3.	The set of solutions I of the inequality $-x+7<-x \text { is: }$	\mathfrak{R}	0	ϕ
4.	If $E=\{x \mid x \in Q$ and $3 x=2\}$ then $E=$	$\left\{\frac{2}{3}\right\}$	ϕ	$\frac{2}{3}$

III- Consider the following sets: $\mathrm{E}=\{1,2,3,4,5,7,9\}, \mathrm{A}=\{1,3,5,9\} \& \mathrm{~B}=\{2,4,9\}$
a. Verify that A is a subset of E.
b. Find: $\mathrm{A} \cap \mathrm{B} ; \mathrm{A} \cup \mathrm{E} \& \overline{\overline{\mathrm{~A}}}$.
c. Determine: $\mathrm{A} \cup \overline{\mathrm{B}} \& \mathrm{~A} \cap \overline{\mathrm{E}}$.
d. Complete:
i. If $\mathrm{A} \subset \mathrm{E}$, then $\mathrm{A} \cap \mathrm{E}=\ldots .$.
iv. $\mathrm{A} \cap \mathrm{A}=\mathrm{A} \cup \mathrm{A}=\ldots .$.
vii. $\overline{\mathrm{E}}=$
ii. If $\mathrm{B} \subset \mathrm{E}$, then $\mathrm{B} \cup \mathrm{E}=\ldots \ldots$
v. $\mathrm{B} \cup \mathrm{A} \mathrm{E}$
iii. If $\mathrm{A} \subset \mathrm{B}$, then $\overline{\mathrm{B}} \ldots . . . \overline{\mathrm{A}} \quad$ vi. $\mathrm{A} \ldots . . \mathrm{B} \cup \mathrm{A}$
viii. $\mathrm{B} \cup \varnothing=. . . .$.
$i x . \mathrm{A} \cap \varnothing=\ldots \ldots$
IV. Consider the sets $\mathrm{A}=\{\mathrm{x} \mid \mathrm{x} \in \mathrm{Z} \&-3 \leq \mathrm{x} \leq 3\}$ and $\mathrm{B}=\{1,2,3,6\}$.
a. Express set A in roster notation and set B in form of set builder notation.
b. Find $\mathrm{A} \cap \mathrm{B}$ and $\mathrm{A} \cup \mathrm{B}$.
\boldsymbol{V} - Given the following sets:
$E=\{x \mid x$ is a digit $\}$.
$A=\{x \mid x \in N$ and x is a divisor of 8 different from 1$\}$.
$B=\left\{x \mid x \in Z\right.$ and x is a solution of the equation $\left.(x-2)\left(x^{2}-5\right)=0\right\}$.
$C=\{x \mid x \in B$ and x is anirrational number $\}$.
$\mathrm{D}=\{2,3,5\}$.
1- Write $\mathrm{E}, \mathrm{A}, \mathrm{B}$ and C in extension.
2- Write D in comprehension.
3- Find the sets: $\mathrm{A} \cap \mathrm{D}, \overline{\mathrm{A} \cap \mathrm{D}}$ and $\overline{\overline{\mathrm{A}} \cup \mathrm{D}}$.
VI- Given the set: $\mathrm{E}=\left\{\mathrm{x} \mid \mathrm{x} \in \mathrm{Z}^{+}\right.$and $\left.\mathrm{x} \leq 12\right\}$, where A \& B are two subsets of E such that:
$A=\{x \mid x$ is a multiple of 3$\}$ and $B=\{1,2,3,4,6,12\}$

1) Write $E \& A$ in extension. Script B in comprehension.
2) Find $A \cup B, \overline{A \cup B}, \bar{A}, \bar{B}$ and $\bar{A} \cap \bar{B}$.

Aflastering problemss		
Chapter	Exercises	Pages
CH-2: Sets	$2 \xrightarrow[\text { till }]{\rightarrow} 14,18,19 \& 20$	$24 \xrightarrow{\text { till }} 28$.
	$4,5 \& 8$	$30 \& 31$
	$11,12 \& 13$	$32 \& 33$

