		<u> </u>
Al Mahdi High	Mathematics	10 th -Grade
Name:	"Foundations of Sets"	W. S-2.

I- Answer by *true* or *false* with *justification*.

No.	Statement	T/F	Justification
1-	The favorite teachers in your school form a set.		
2-	The classes in your school form a set.		
3-	$a = \{a\}$		
4-	$\phi = \{0\}$		1 /V / N
5-	If $A = \{x \mid 3x = 9 \& x \in \Re\}$ and $B = \{x \mid x^2 = 9 \& x \in \Re\}$ then, $A = B$.		
6-	$\phi \subset \{a,b\}$		
7-	If $J = \{i, \{p, n\}, r\}$, then $Card(p(J)) = 2^4$.		
8-	If $N = \{a, \{b, c\}, d\}$, then $\{b, c\} \subset N$.		

II- Choose with justification the only correct answer:

No.	Question	Response		
340.	Question	А	\mathcal{B}	C
1.	If A and B are two subsets of a set E such that $A \cap B = \{a\}$ where $Card(A)=2$, $Card(B)=3$ and $\overline{A} = \{2,3,b\}$ then $B =$	$B \in \{a,2\}$	$B = \{2, 3, b\}$	$B = \{a, 3, b\}$
2.	If A and B are two subsets of a set E such that $A \subset B$ then $(A \cup B) \cap (\overline{A} \cup E) =$	В	A	E
3.	The set of solutions <i>I</i> of the inequality $-x + 7 < -x$ is:	R	0	ф
4.	If $E = \{x \mid x \in Q \text{ and } 3x = 2\}$ then $E =$	$\left\{\frac{2}{3}\right\}$	ф	$\frac{2}{3}$

III- Consider the following sets: $E = \{1, 2, 3, 4, 5, 7, 9\}, A = \{1, 3, 5, 9\} \& B = \{2, 4, 9\}$

- a. Verify that A is a subset of E.
- **b.** Find: $A \cap B$; $A \cup E \& \overline{A}$.
- c. Determine: $A \cup \overline{B} \& A \cap \overline{E}$.
- *d.* Complete:

i. If
$$A \subset E$$
, then $A \cap E = \dots$ iv. $A \cap A = A \cup A = \dots$

iv.
$$A \cap A = A \cup A = \dots$$

ii. If
$$B \subset E$$
, then $B \cup E = ...$.

$$v. B \cup A.....E$$

viii.
$$B \cup \emptyset = \dots$$

iii. If
$$A \subset B$$
, then \overline{B} \overline{A}

$$vi. A....B \cup A$$

ix.
$$A \cap \emptyset = \dots$$

IV- Consider the sets $A = \{x \mid x \in Z \& -3 \le x \le 3\}$ and $B = \{1, 2, 3, 6\}$.

a. Express set A in roster notation and set B in form of set builder notation.

- **b.** Find $A \cap B$ and $A \cup B$.
- V-Given the following sets:

$$E = \{x \mid x \text{ is a digit}\}.$$

 $A = \{x \mid x \in N \text{ and } x \text{ is a divisor of 8 different from 1} \}.$

B = $\{x \mid x \in Z \text{ and } x \text{ is a solution of the equation } (x-2)(x^2-5)=0\}.$

 $C = \{x \mid x \in B \text{ and } x \text{ is an irrational number} \}.$

$$D = \{2, 3, 5\}.$$

- 1- Write E, A, B and C in extension.
- **2-** Write D in comprehension.
- 3- Find the sets: $A \cap D$, $A \cap D$ and $A \cup D$.
- *VI* Given the set: $E = \{x \mid x \in Z^+ \text{ and } x \le 12\}$, where A & B are two subsets of E such that:

 $A = \{x \mid x \text{ is a multiple of 3} \} \text{ and } B = \{1, 2, 3, 4, 6, 12\}$

- 1) Write E & A in extension. Script B in comprehension.
- 2) Find $A \cup B$, $\overline{A \cup B}$, \overline{A} , \overline{B} and $\overline{A} \cap \overline{B}$.

Mastering problems				
Chapter	Exercises	Pages		
CH-2: Sets	$2 \xrightarrow{\text{till}} 14,18,19 \& 20$	$24 \xrightarrow{iill} 28.$		
	4,5 & 8	30 & 31		
	11,12 & 13	32 & 33		