[©] Lycée Des Arts Mathematics 9th-Grade Name: Rational and irrational numbers W.S-1 Calculation of real numbers

- 1. Consider the following numerical expressions: $A = \left(7 + \frac{1}{7}\right) \div 5$; B = 0.0001407.
 - a) Put the number A in the form of $\frac{a}{b}$ (where $b \neq 0$) list **all** steps of calculations.
 - b) Set *B* in the form of $c \times 10^n$, c being a number between 1 and 9, and *n* is an integer.
- 2. Perform the following numerical problems:
 - a) Prove that the product $N = -12^{100} \times \left(-\frac{2}{3}\right)^{-50} \times \left(\frac{1}{6}\right)^{149}$ is an *integer*.
 - b) Express $S = \left(\frac{8}{5}\right)^{21} \times \left(\frac{5}{8}\right)^{20}$ in scientific notation.
- 3. In the orthonormal system of axes (x'Ox; y'Oy), consider the points $A(a, y_A)$, $B(b, y_B)$,

$$C(x_c,c)$$
 and $D(x_D,d)$, so that: $a = \frac{1-\frac{1}{6}}{1+\frac{1}{6}}; b = \frac{(2 \times 10^6)^2 \times 12.5}{7000 \times 10^{10}};$

$$c = \frac{4+51}{22} - \frac{14}{9} \times \frac{27}{21} + \frac{12 \times 15}{40} \div 9 \text{ and } d = 10^3 \times \left(\frac{-5}{2}\right)^{-2} \times \frac{5^{-1}}{32}.$$

- a) Specify the condition for which (AB) is parallel to the ordinate axis? Is (AB) || y axis?
- b) Specify the condition for which (CD) is parallel to the abscissa axis? Is (CD)||x-axis?
- 4. Consider in an orthonormal system of axes the points R(r,s), N(n,k) and K(3,7), so

that:
$$s = \frac{8}{3} + 5 \div \left(1 - \frac{2}{5}\right); k = \frac{55 \times 10^3 \times 2^{10}}{10^4 \times 2^9} \quad n = \frac{2 - \frac{1}{2}}{\left(\frac{1}{2}\right)^2} \& r = \frac{-2 \times 10^{-2} \times (-6) \times 10^7}{4 \times 10^5}$$

- a) Show that (RN) is parallel to one of the coordinate axes. Specify it.
- b) Compare the coordinate of the points K & R to determine the nature of the triangle *RNK*.
 - *i*. Determine the center and the radius of the circle circumscribed bout triangle *RNK*.
 - *ii.* Justify that the point S(7,9) belongs to this circle.
- 5. Consider the numbers: $A = \frac{117}{63}$ and $B = -\frac{8}{7}$.
 - a) Show that A is *reducible* fraction.
 - b) Verify that A-B is a *natural number*.

- 6. Answer the following:
 - a) Write $C = \frac{10^{-4} \times 4 \times 10^6 \times 5^2}{2 \times 10^{-10}}$ in simplest form possible.
 - b) Arrange $\frac{11}{12}$; $\frac{7}{8}$; $\frac{5}{6}$ & $\frac{3}{4}$. in ascending order (*Note*: reduce to same denominator).
 - c) Give the *irreducible* form of 4.25; $3.\overline{6} \& 6.\overline{15}$.
 - d) How can you prove that the numbers 65 and 42 are relatively prime (*coprime*)

7. Given that:
$$A = \frac{9}{5} - \frac{3}{5} \times \frac{7}{9}$$
 and $B = \left(3 - \frac{2}{3}\right) \div \frac{1}{9}$.

- a) Prove that *B* is a natural integer.
- b) If *B* is the number of number of boys in a class of 25 students, then find the percentage of girls in this class.
- c) Express *A*, in the form of an irreducible fraction.
- d) Find 25% of A.
- 8. Write the following in the simplest form possible:

$$R = \frac{\frac{5}{3} - 1}{1 - \frac{1}{6}} \quad ; \qquad S = \frac{5}{2} - \frac{9}{2} \times \frac{1}{3} \quad ; \qquad C = \frac{4 \times 10^{12} \times 1.5}{9 \times 10^{11}}.$$

9. Consider the following numbers:

$$R = \left(\frac{7}{4} - \frac{3}{2}\right) \div \left(\frac{3}{4} \times \frac{4}{9} - 2\right) \qquad N = \frac{0.3 \times 10^{-3} \times 0.006 \times 10^{6}}{0.9 \times (10^{2})^{4}} \qquad S = \frac{5.1 \times 10^{2} - 270 \times 10^{-1}}{4.83 \times 10^{2}}$$

By showing *key* steps of calculations:

- a) Express *R* in the form of an irreducible fraction and then in scientific notation.
- b) Prove that *N* is a *decimal number*.
- c) Show that *S* is a *natural number*.
- 10.Consider the numbers:

$$R = \left(\frac{2}{5}\right)^2 - \frac{1}{5}; \qquad S = \frac{+1.25 \times 10^7 \times 8 \times 10^{-4}}{4 \times 10^2}; \qquad K = \frac{12}{40} \times \frac{15}{36} \div \frac{25}{8}.$$

- a) Find the values of *R*, *S* and *K* in details and give the results in simplest form.
- b) Which of the numbers *R*, *S* and *K* are opposite numbers and which of them are *reciprocal* of each other.

11.Consider the values:
$$A = \frac{7 \times (10^4)^3}{5 \times 10^8 \times 2 \times 10^3}$$
 and $B = \frac{2 + \frac{1}{3}}{1 - \frac{2}{3}}$. Prove that $A \times \frac{1}{B} = 1$.

- 12. Consider the expression A(x) = ax+1,
 - a) Compare $A(\sqrt{2}) \& A(5)$ where a > 1
 - b) Prove that A(-2) < A(-5) where a < -1

13. For what values of the variable *n* is the equation (E): $\frac{4^4 - 2^3}{2^3} = 2^{2n+1} - 1$ valid?

14.Let A =
$$\frac{7}{18} \times \frac{2}{7} - \left(\frac{5}{3} - 1\right)^2$$
 and B = $\frac{0.3 \times 10^{-6} \times 0.006 \times 10^6}{0.9 \times (10^2)^4}$.

By writing all the steps of computations:

- *i*. Express *A* in the form of an irreducible fraction.
- *ii.* Script *B* in the form of $a \times 10^n$ where *a* is a natural number.

15.Single out with *justification*, the only correct answer for each of the following questions:

No.	Questions	Expected answers		
		а	b	С
1.	$2\pi, -\sqrt{39}, \sqrt{10^{10}}, \frac{\sqrt{9}}{3}, 0.\overline{09}.$	One irrational number	Two irrational numbers	Three irrational numbers
	Among these numbers, there is			
2.	0.4 + 2.14	2.54	2.58	2.418
3.	$5^{11} - 5^{10} =$	4×5^{10} .	5 ²¹	5^{1}
4.	$2^2 + 2^{-2} =$	2 ⁰	4 ⁰	$\frac{17}{4}$
5.	$3 \times 10^{-2} + 0.05 =$	3.05×10^{-2}	$\frac{2}{25}$	0.35
6.	$\sqrt{0.\overline{4}} =$	$0.\overline{2}$	0.2	$\frac{2}{3}$
7.	$\frac{4^4 - 2^3}{2^3} =$	$2^{5}-1$	2^2	2 ⁸
8.	$\sqrt{7.0\overline{1} - \frac{4}{15}} =$	$\frac{2}{3}$	$\frac{1}{2}$	$\frac{5\sqrt{29}}{5}$
9.	$3^{-1} - 3^{-3} =$	$\left(\frac{2}{3}\right)^3$	$\frac{2^3}{3}$	$-\left(\frac{2}{3}\right)^3$
10.	$3^{12} + 3^{12} + 3^{12} =$	9 ¹²	9 ³⁶	3 ¹³

16.Consider the numerical expressions: $R = (2^n + 2)^2 - 1$ and $S = \frac{4^n + 4 \cdot 2^n + 3}{4^n + 2^n}$ a) Write *R* in an expanded form.

- b) Show that: $S = \frac{2^n + 3}{2^n}$.
- c) Find the numerical value of n, so that S = 25.

17. Given a rectangle ABCD such that $AB = (4 - \sqrt{2})cm$ and $AD = (4 + \sqrt{2})cm$.

- *i*. Decide which of the two given dimensions is the width of the rectangle.(Explain)
- *ii.* Verify that AC = 6.
- *iii.* Compute the side of a square having an area equivalent to the perimeter of rectangle *ABCD*.

18.Express the following numerical expressions in lowest terms possible where *a* & *b* are two real number different than zero:

$$A = \frac{(-3)^{5}(-12)^{3}(-4)^{10}}{(8)^{4}(24)^{5}}; \quad B = \frac{(-5)^{3}(-8)^{3}(-9)^{2}}{15^{2}\cdot12^{4}}; \quad C = \frac{a^{3n} - a^{n+2}}{a^{2n} - a^{n+1}}.$$
$$D = \frac{4^{n+2} - 4^{n}}{2^{n+2} - 2^{n-1}}; \quad E = \frac{\left(\frac{a^{3}b}{a^{2}b^{5}}\right)^{-2}}{\left(\frac{a^{-1}b}{a^{-3}b^{4}}\right)^{3}}; \quad F = \sqrt{\frac{8^{20} + 4^{10}}{8^{4} + 4^{26}}}.$$

19. Consider the rectangle *MATE*, of dimensions $ET = \sqrt{2} - 1 \& EM = 5\sqrt{2} + 7$. and a square

AFIN of side $AN = \sqrt{2} + 1$.

- *i*. Show that the two given plane geometrical shapes have equal areas.
- *ii.* Prove that $MF = \sqrt{6}$.

iii. Denote by *p* and *p*' the respective perimeters of the $\sqrt{2}$ -1 given quadrilaterals. Confirm that p = 3p'.

20. Given that a, b & c are three real non – zero numbers, so that the ratio of 2 to a is equal to the sum of the reciprocals of b & c.

a) Convert the above statement into a mathematical equation in a, b & c

b) Calculate *b*, so that
$$a = -2 \& c = -\frac{4}{3}$$
.

c) Is it possible to find the value of c such that $a = 1.5 \& b = \frac{3}{4}$? Why?

d) In this part, suppose that: c = -(x+1) & b = x-1, where x > 0.

i) Prove that:
$$\frac{1}{a} = \frac{1}{x^2 - 1}$$
.

ii) Calculate the numerical value of x, if a = 3.

21. Find the numerical value of x in each of the following figures:

Mathematics W.S-1. Rational L Irrational numbers

P'

 $\sqrt{2}+1$

Ρ

 $5\sqrt{2}+7$