Name: Rational and irrational numbers

1. Consider the following numerical expressions:
$A=\left(7+\frac{1}{7}\right) \div 5 \quad ; \quad B=0.0001407$.
a) Put the number A in the form of $\frac{a}{b}$ (where $b \neq 0$) list all steps of calculations.
b) Set B in the form of $c \times 10^{n}$, c being a number between 1 and 9 , and n is an integer.
2. Perform the following numerical problems:
a) Prove that the product $N=-12^{100} \times\left(-\frac{2}{3}\right)^{-50} \times\left(\frac{1}{6}\right)^{149}$ is an integer.
b) Express $S=\left(\frac{8}{5}\right)^{21} \times\left(\frac{5}{8}\right)^{20}$ in scientific notation.
3. In the orthonormal system of axes $\left(x^{\prime} O x ; y^{\prime} O y\right)$, consider the points $A\left(a, y_{A}\right), B\left(b, y_{B}\right)$, $C\left(x_{C}, c\right)$ and $D\left(x_{D}, d\right)$, so that: $a=\frac{1-\frac{1}{6}}{1+\frac{1}{6}} ; b=\frac{\left(2 \times 10^{6}\right)^{2} \times 12.5}{7000 \times 10^{10}}$; $c=\frac{4+51}{22}-\frac{14}{9} \times \frac{27}{21}+\frac{12 \times 15}{40} \div 9$ and $d=10^{3} \times\left(\frac{-5}{2}\right)^{-2} \times \frac{5^{-1}}{32}$.
a) Specify the condition for which $(A B)$ is parallel to the ordinate axis? Is $(A B) \| y$-axis?
b) Specify the condition for which $(C D)$ is parallel to the abscissa axis? Is $(C D) \mid x$-axis?
4. Consider in an orthonormal system of axes the points $R(r, s), N(n, k)$ and $K(3,7)$, so that: $s=\frac{8}{3}+5 \div\left(1-\frac{2}{5}\right) ; k=\frac{55 \times 10^{3} \times 2^{10}}{10^{4} \times 2^{9}} \quad n=\frac{2-\frac{1}{2}}{\left(\frac{1}{2}\right)^{2}} \& r=\frac{-2 \times 10^{-2} \times(-6) \times 10^{7}}{4 \times 10^{5}}$
a) Show that $(R N)$ is parallel to one of the coordinate axes. Specify it.
b) Compare the coordinate of the points $K \& R$ to determine the nature of the triangle RNK.
i. Determine the center and the radius of the circle circumscribed bout triangle $R N K$.
ii. Justify that the point $S(7,9)$ belongs to this circle.
5. Consider the numbers: $A=\frac{117}{63}$ and $B=-\frac{8}{7}$.
a) Show that A is reducible fraction.
b) Verify that $\mathrm{A}-\mathrm{B}$ is a natural number.
6. Answer the following:
a) Write $C=\frac{10^{-4} \times 4 \times 10^{6} \times 5^{2}}{2 \times 10^{-10}}$ in simplest form possible.
b) Arrange $\frac{11}{12} ; \frac{7}{8} ; \frac{5}{6} \& \frac{3}{4}$.in ascending order (Note: reduce to same denominator).
c) Give the irreducible form of $4.25 ; 3 . \overline{6} \& 6 . \overline{5}$.
d) How can you prove that the numbers 65 and 42 are relatively prime (coprime)
7. Given that: $A=\frac{9}{5}-\frac{3}{5} \times \frac{7}{9}$ and $B=\left(3-\frac{2}{3}\right) \div \frac{1}{9}$.
a) Prove that B is a natural integer.
b) If B is the number of number of boys in a class of 25 students, then find the percentage of girls in this class.
c) Express A, in the form of an irreducible fraction.
d) Find 25% of A.
8. Write the following in the simplest form possible:

$$
R=\frac{\frac{5}{3}-1}{1-\frac{1}{6}} \quad ; \quad S=\frac{5}{2}-\frac{9}{2} \times \frac{1}{3} \quad ; \quad C=\frac{4 \times 10^{12} \times 1.5}{9 \times 10^{11}} .
$$

9. Consider the following numbers:

$$
R=\left(\frac{7}{4}-\frac{3}{2}\right) \div\left(\frac{3}{4} \times \frac{4}{9}-2\right) \quad N=\frac{0.3 \times 10^{-3} \times 0.006 \times 10^{6}}{0.9 \times\left(10^{2}\right)^{4}} \quad S=\frac{5.1 \times 10^{2}-270 \times 10^{-1}}{4.83 \times 10^{2}}
$$

By showing key steps of calculations:
a) Express R in the form of an irreducible fraction and then in scientific notation.
b) Prove that N is a decimal number.
c) Show that S is a natural number.
10. Consider the numbers:

$$
R=\left(\frac{2}{5}\right)^{2}-\frac{1}{5} ; \quad S=\frac{+1.25 \times 10^{7} \times 8 \times 10^{-4}}{4 \times 10^{2}} ; \quad K=\frac{12}{40} \times \frac{15}{36} \div \frac{25}{8}
$$

a) Find the values of R, S and K in details and give the results in simplest form.
b) Which of the numbers R, S and K are opposite numbers and which of them are reciprocal of each other.
11. Consider the values: $A=\frac{7 \times\left(10^{4}\right)^{3}}{5 \times 10^{8} \times 2 \times 10^{3}}$ and $B=\frac{2+\frac{1}{3}}{1-\frac{2}{3}}$. Prove that $A \times \frac{1}{B}=1$.
12. Consider the expression $A(x)=a x+1$,
a) Compare $A(\sqrt{2}) \& A(5)$ where $a>1$
b) Prove that $A(-2)<A(-5)$ where $a<-1$
13.For what values of the variable n is the equation (E): $\frac{4^{4}-2^{3}}{2^{3}}=2^{2 n+1}-1$ valid?
14.Let $\mathrm{A}=\frac{7}{18} \times \frac{2}{7}-\left(\frac{5}{3}-1\right)^{2} \quad$ and $\quad \mathrm{B}=\frac{0.3 \times 10^{-6} \times 0.006 \times 10^{6}}{0.9 \times\left(10^{2}\right)^{4}}$.

By writing all the steps of computations:
i. Express A in the form of an irreducible fraction.
ii. Script B in the form of $a \times 10^{n}$ where a is a natural number.
15.Single out with justification, the only correct answer for each of the following questions:

No.	Questions	Expected answers		
		a	b	c
1.	$2 \pi,-\sqrt{39}, \sqrt{10^{10}}, \frac{\sqrt{9}}{3}, 0 . \overline{09} .$ Among these numbers, there is	One irrational number	Two irrational numbers	Three irrational numbers
2.	$0 . \overline{4}+2 . \overline{14}$	2.54	$2 . \overline{58}$	$2 . \overline{418}$
3.	$5^{11}-5^{10}=$	4×5^{10}.	5^{21}	5^{1}
4.	$2^{2}+2^{-2}=$	2^{0}	4^{0}	$\frac{17}{4}$
5.	$3 \times 10^{-2}+0.05=$	3.05×10^{-2}	$\frac{2}{25}$	0.35
6.	$\sqrt{0 . \overline{4}}=$	$0 . \overline{2}$	0.2	$\frac{2}{3}$
7.	$\frac{4^{4}-2^{3}}{2^{3}}=$	$2^{5}-1$	2^{2}	2^{8}
8.	$\sqrt{7.01-\frac{4}{15}}=$	$\frac{2}{3}$	$\frac{1}{2}$	$\frac{5 \sqrt{29}}{5}$
9.	$3^{-1}-3^{-3}=$	$\left(\frac{2}{3}\right)^{3}$	$\frac{2}{3}^{3}$	$-\left(\frac{2}{3}\right)^{3}$
10.	$3^{12}+3^{12}+3^{12}=$	9^{12}	9^{36}	3^{13}

16.Consider the numerical expressions: $R=\left(2^{n}+2\right)^{2}-1 \quad$ and $\quad S=\frac{4^{n}+4 \cdot 2^{n}+3}{4^{n}+2^{n}}$
a) Write R in an expanded form.
b) Show that: $S=\frac{2^{n}+3}{2^{n}}$.
c) Find the numerical value of n, so that $S=25$.
17. Given a rectangle $A B C D$ such that $A B=(4-\sqrt{2})$ cm and $A D=(4+\sqrt{2}) \mathrm{cm}$.
i. Decide which of the two given dimensions is the width of the rectangle.(Explain)
ii. Verify that $A C=6$.
iii. Compute the side of a square having an area equivalent to the perimeter of rectangle $A B C D$.
18. Express the following numerical expressions in lowest terms possible where $a \& b$ are two real number different than zero:

$$
\begin{array}{ll}
A=\frac{(-3)^{5}(-12)^{3}(-4)^{10}}{(8)^{4}(24)^{5}} ; B=\frac{(-5)^{3}(-8)^{3}(-9)^{2}}{15^{2} \cdot 12^{4}} ; & C=\frac{a^{3 n}-a^{n+2}}{a^{2 n}-a^{n+1}} \\
D=\frac{4^{n+2}-4^{n}}{2^{n+2}-2^{n-1}} ; \quad E=\frac{\left(\frac{a^{3} \cdot b}{a^{2} \cdot b^{5}}\right)^{-2}}{\left(\frac{a^{-1} \cdot b}{a^{-3} \cdot b^{4}}\right)^{3}} ; \quad F=\sqrt{\frac{8^{20}+4^{10}}{8^{4}+4^{26}}}
\end{array}
$$

19. Consider the rectangle $M A T E$, of dimensions $E T=\sqrt{2}-1 \& E M=5 \sqrt{2}+7$. and a square $A F I N$ of side $A N=\sqrt{2}+1$.
i. Show that the two given plane geometrical shapes have equal areas.
ii. Prove that $M F=\sqrt{6}$.
iii. Denote by p and p^{\prime} the respective perimeters of the given quadrilaterals. Confirm that $p=3 p^{\prime}$.

20.Given that $a, b \& c$ are three real non - zero numbers, so that the ratio of 2 to a is equal to the sum of the reciprocals of $b \& c$.
a) Convert the above statement into a mathematical equation in $a, b \& c$
b) Calculate b, so that $a=-2 \& c=-\frac{4}{3}$.
c) Is it possible to find the value of c such that $a=1.5 \& b=\frac{3}{4}$? Why?
d) In this part, suppose that: $c=-(x+1) \& b=x-1$, where $x>0$.
i) Prove that: $\frac{1}{a}=\frac{1}{x^{2}-1}$.
ii) Calculate the numerical value of x, if $a=3$.
21.Find the numerical value of x in each of the following figures:

