

I- $\quad N O U R$ is a parallelogram of center $I . K$ is the midpoint of $[I O]$ and $F$ is the midpoint of $[I R]$.
a. Prove that $N K U F$ is a parallelogram.
b. Prove that the triangles $F U R$ and $N K O$ are congruent.

II- Consider the parallelogram NOUR.
a. Plot $K$ the midpoint of [NR]
b. Construct $F$ the symmetric of $O$ with respect to $K$.
c. Prove that $N F K O$ is a parallelogram.
d. Justify that the points $F, R$ and $U$ are collinear.
$\boldsymbol{e}$. Deduce that $R$ is the midpoint of $[F U]$.
III- $A B C$ is a triangle where $R \& N$ are the respective midpoints of the sides $[A B] \&[A C]$.
a. Construct $K$ the symmetric of $C$ with respect to $R$ and $F$ the symmetric of $B$ with respect to $N$.
b. Prove that $A C B K$ and $A B C F$ are two parms.
c. Deduce that the point $K, A \& F$ are collinear.
d. Prove that $F$ is the symmetric of $K$ with respect to $A$.


IV- Given that triangle, $A B C$ is isosceles of vertex $A$. Such that, $(R N)$ is the perpendicular bisector of $[B S]$ and $(F K)$ is the perpendicular bisector of [SC].
a. Show that RSFA is a parallelogram.
b. Prove that the perimeter of $R S F A$ is equal double the measure of $[A B]$.

$\boldsymbol{V}$ - Consider the parallelogram $N O U R$, so that $N O=2 O U$, and $K$ is the midpoint of [ $N O$ ].
a. Show that $R K$ is the bisector of $N \hat{R} U$.
b. Prove that $U K$ is the bisector of $O \hat{U} R$.
c. Compute the measure of $R \hat{K} U$.


VI- Given that $N$ is any point on a circle $C(\mathrm{O} ; 3 \mathrm{~cm})$.
a. Draw figure.
b. Plot the diametrically opposite points $F$ \& $K$.
c. Mark the point $R$ the symmetric of $N$ with respect to $O$.
$d$. What is the nature of quadrilateral $N F R K$ ?
VII- Consider the parallelogram $A B C D$.
a) Indicate the properties included in the adjacent figure.
b) Prove that $A R C N$ is a rectangle.


VIII- Let $C(O ; R)$ and $C^{\prime}\left(O^{\prime} ; R\right)$ be two intersecting circles.
a. Draw figure.
b. (C) \& $\left(\mathrm{C}^{\prime}\right)$ intersect at the points $R \& N$. What is the nature of the quadrilateral $O R O^{\prime} N$ ?
$\boldsymbol{I X}$ - ROME is a square of center $N$.
a. Construct sketch.
b. Let $J$ be any point of $[R M]$. Locate $K$ the symmetric of J with respect to $O$.
c. What is the nature of quadrilateral JOKE?
$X$ - CORE is a parallelogram such that $C O=2 O R$.
a. Sketch the figure.
b. Let $N \& K$ be the respective midpoints of sides $C O$ and $R E$.
i. Prove that $N O R K$ and $C N K E$ are two rhombuses.
ii. Show that triangle $C O K$ is right at $K$.

XI- $x \hat{O} y$ and $y \hat{O} z$ are two adjacent supplementary angles. Let $B \& C$ be the feet of perpendiculars issued from the point $A$ of $[O y)$ to the bisectors of $x \hat{O} y$ and $y \hat{O} z$.
a. Show that quadrilateral $O B A C$ is a rectangle.
b. Prove that the straight line $(B C)$ is parallel to $(x z)$.

XII- Consider the rectangle $A B C D$ such that $A B=2 B C$. Let $I \& J$ be the respective midpoints of $[A B]$ and $[C D]$.
a. Assemble the figure.
b. Show that $[B J)$ is the bisector of angle $A \hat{B} C$.
c. Show that $A \hat{J} B .=90^{\circ}$.
d. Prove triangle $D I C$ is a right isosceles triangle.
$\boldsymbol{e}$. $[A J]$ intersects $[D I]$ in $N$ and $[B J]$ intersects $[C I]$ in $M$. what is the nature of quadrilateral MJNI.

XIII- Let $A B C D$ be a parallelogram of center T. Use the given data to compute the missing values. Given that: $A \hat{B} C=135^{\circ}$
R.T.F: BÂD.

Given that: $A C=5 x-12$ and $A T=14$.
R.T.F: $x$.

Given that: $A B=6, B C=9$ and $A \hat{B} C=80^{\circ}$.
R.T.F: $C D$.

Given that: $B T=3 x+1$ and $B D=4 x+8$.
R.T.F: $x$.

Given that: $B C=4 x-7$ and $A D=8 x-5$.
R.T.F: $x$.

Given that: $B \hat{C} D=3 x+14$ and $A \hat{D} C=x+10$.
R.T.F: $A \hat{D} C$.

## The parallelogram mystery



Cut the colored pieces of the above figure to form a parallelogram.

