ý	Al- Mahdi High		Mathematics		11 th -Grade		
J	Name:		Limits & Continuity		W.S-3		
<i>I</i> - Choose with justification the only correct answer:							
	No. Propositions		Expected ansu		ers		
	JV 0 .	Propositions	а	б	С		
	1.	$\lim_{x\to 0^+}\frac{x+1}{x^2-x}$	$-\infty$	$+\infty$	±∞		
	2.	$\lim_{x \to -\infty} \frac{x}{\sqrt{x^2 + 4x}}$	+1	-1	0-		
II-	- Determine the following limits:						
		$r^2 + 4r + 4$	r	$^{2} + 6r + 9$	$ x^2 - 2x + 3x$		

1) $\lim_{x \to -2} \frac{x^{2} + 4x + 4}{x^{3} + 8}$	5) $\lim_{x \to -3} \frac{x + 6x + 9}{x^2 + 4x + 3}$ 9) $\lim_{x \to 0} \frac{ x - 2x + 5x}{ x }$
2) $\lim_{x \to +\infty} \sqrt{x+1} - x$	6) $\lim_{x \to 1} \frac{x^3 - x^2 + x - 1}{x - 1}$ 10) $\lim_{x \to 0^-} \left(\frac{1}{x} - \frac{1}{x^2}\right)$
3) $\lim_{x \to +3} \frac{\sqrt{x+1} - 2\sqrt{x-2}}{x-3}$	7) $\lim_{x \to -\infty} \frac{(2x^3 - 5)^2}{(3x^2 + 1)^3}$
4) $\lim_{\substack{x \to 3 \ x > 3}} \frac{\sqrt{x+1}-2}{x-3}$	8) $\lim_{x \to 0} \frac{ x + x}{x}$

III- Let *r* be a function defined by: $r(x) = \frac{\sqrt{x^3 + 1} - 1}{x}$ *a.* Show that, for all $x \neq 0$, $r(x) = \frac{x^2}{\sqrt{x^3 + 1} + 1}$, then deduce the limit of r(x) as *x* tends to zero. *b.* If $n(x) = \frac{\sqrt{x+3} - \sqrt{3}}{x}$, then determine $\lim_{x \to 0} n(x)$ *IV*- 1) If $f(x) = \frac{\cos x}{x}$, then prove that: $-\frac{1}{x} \leq f(x) \leq \frac{1}{x}$, for all x > 0. 2) Deduce: $\lim_{x \to 0} \frac{\cos x + x}{x}$ 2) Deduce: $\lim_{x \to +\infty} \frac{\cos x + x}{x}$

V- Let f be the function defined by:
$$f(x) = \frac{5-3x}{2x+3x}$$

- a. Determine the domain of definition of f.
- b. Calculate the limits of f at the open boundaries of its domain.
- c. Deduce asymptotes of f.

11th-Grade Scientific section Mathematics W.S-3. Limits and Continuity *VI*- Consider the rational functions defined respectively by: $f(x) = \frac{x+3}{2-x}$ and $g(x) = \frac{3x-2}{(x+3)^2}$

- a. Calculate limits of f as x tends to: $\pm \infty \& 2$.
- b. Deduce the asymptotes of curve of f.
- c. Calculate limits of g as x tends to: $\pm \infty \& -3$.
- *d*. Deduce the asymptotes of curve of g.
- *VII* Which of the following functions admit asymptotes that are parallel to either of the coordinate axes? Justify and write equation of the asymptotes.
 - a) $f(x) = \frac{-2x+1}{x+3}$ b) $g(x) = x^2 + 1$ c) $k(x) = \frac{x-5}{x^2-2}$ d) $h(x) = \frac{-2}{x-1}$ e) $s(x) = \frac{x^2-2x+3}{x-1}$

VIII- Let g be the function defined by: $g(x) = \frac{3x^2 - 2x - 1}{x + 2}$ and its representative curve C_g .

- a. Determine the interval over which the function g admits a curve.
- b. Determine the real numbers a, b & c so that, for all $x \neq -2$, $g(x) = ax + b + \frac{c}{x+2}$.
- c. Does the function g admit a vertical asymptote? Find it.
- *d*. Calculate the $\lim_{x \to \infty} g(x)$.
- e. Calculate $\lim_{x \to \pm \infty} [g(x) (ax + b)]$. Interpret the result graphically.
- *x* $\to \pm \infty$ *f.* Study over the domain of *g*, the relative position of *C_g* with respect to the straight line (d) of equation y = ax + b.

IX- Consider the function g defined by:
$$y = g(x) = \begin{cases} \frac{x^2 + 4x - 5}{x - 1} & x < -2 \\ 2x + 7 & -2 \le x < 1 \\ x^2 - 2a + 1 & x \ge 1 \end{cases}$$

- *a*. Determine the following limits of g(x) as $x \to -\infty \& x \to 0$
- *b*. Prove that the limit of *g* exists at x = -2
- c. Find the numerical value of a, so that $\lim_{x \to 1} g(x)$ exists.

11th-Grade Scientific section

X-Find the value a if the limit of the given function exists:

$$f(x) = \begin{cases} x^2 - 2a & \text{for } x < 2\\ 3a + x & \text{for } x > 2 \end{cases}$$

Consider the function f defined by $f(x) = \begin{cases} x + 2a - b & \text{for } x < 1\\ a + x + b - 1 & \text{for } 1 < x < 3\\ x^2 - 2a - 5b & \text{for } x > 3 \end{cases}$ XI-

Find the values of a & b if $\lim_{x \to 1} f(x) \& \lim_{x \to 3} f(x)$ exist.

11th-Grade Scientific section

Mathematics W.S-3. Limits and Continuity

XIII- Consider the function *f* defined by: $y = f(x) = \begin{cases} 2x^2 + 1 & x < 0 \\ ax^2 + 3x + 1 & 0 \le x < 3 \\ \frac{bx^2 - 7}{x^2 + 2x - 1} & x > 3 \end{cases}$

$$c+3$$
 $x=3$

- *a*. Prove that *f* is continuous at $x = 0 \forall a \in \mathbb{R}$.
- b. Determine the value of b so that y = -3 is a horizontal asymptote of C_f at $+\infty$.
- c. Find the values of a & c so that f is continuous at x = 3.
- **XIV-** Consider the curve of the real function f: Determine graphically:
 - a) The domain of f.
 - b) The limits:
 - $-\lim_{x\to\infty}f(x)$ $-\lim_{x\to+\infty}f(x)$ $\lim_{\substack{x \to 1 \\ x < 1}} f(x)$ $-\lim f(x)$ $x \rightarrow 1$ *x*>1 $\lim_{x \to -1} f(x)$
 - c) The equations of the given asymptotes.

XV- Consider the functions f & g defined by:

$f(x) = \begin{cases} \frac{ax^2 - 4x - 12}{4 - x^2} & x < -2\\ -2x - 2 & -2 \le x < 3\\ x^2 + b & x \ge 3 \end{cases}$	$g(x) = \begin{cases} \frac{x^2 - x - 2}{4 - x^2} & x < -1\\ 2x - 1 & -1 \le x < 3\\ x^2 + c & x \ge 3 \end{cases}$
 a) Find a so that y = -1 is an asymptote of C_f as x→-∞ b) If a = 1, then study the continuity of f at x = -2. c) Find b so that f is continuous at x = 3 	 Does g admit a limit at x = -1? Determine the value of c so that the function g is continuous at x = 3

