AE- Mandi \mathcal{H} igh
Name:
I- Choose with justification the only correct answer:

No.	Propositions	Expected answers		
		a	6	c
1.	$\lim _{x \rightarrow 0^{+}} \frac{x+1}{x^{2}-x}$	$-\infty$	$+\infty$	$\pm \infty$
2.	$\lim _{x \rightarrow-\infty} \frac{x}{\sqrt{x^{2}+4 x}}$	+1	-1	0

II- Determine the following limits:

1) $\lim _{x \rightarrow-2} \frac{x^{2}+4 x+4}{x^{3}+8}$
2) $\lim _{x \rightarrow+\infty} \sqrt{x+1}-x$
3) $\lim _{x \rightarrow+3} \frac{\sqrt{x+1}-2 \sqrt{x-2}}{x-3}$
4) $\lim _{\substack{x \rightarrow 3 \\ x>3}} \frac{\sqrt{x+1}-2}{x-3}$
5) $\lim _{x \rightarrow-3} \frac{x^{2}+6 x+9}{x^{2}+4 x+3}$
6) $\lim _{x \rightarrow 1} \frac{x^{3}-x^{2}+x-1}{x-1}$
7) $\lim _{x \rightarrow-\infty} \frac{\left(2 x^{3}-5\right)^{2}}{\left(3 x^{2}+1\right)^{3}}$
8) $\lim _{x \rightarrow 0} \frac{|x|+x}{x}$
9) $\lim _{x \rightarrow 0} \frac{\left|x^{2}-2 x\right|+3 x}{|x|}$
10) $\lim _{x \rightarrow 0^{-}}\left(\frac{1}{x}-\frac{1}{x^{2}}\right)$

III- Let r be a function defined by: $r(x)=\frac{\sqrt{x^{3}+1}-1}{x}$
a. Show that, for all $x \neq 0, r(x)=\frac{x^{2}}{\sqrt{x^{3}+1}+1}$, then deduce the limit of $r(x)$ as x tends to zero.
b. If $n(x)=\frac{\sqrt{x+3}-\sqrt{3}}{x}$, then determine $\lim _{x \rightarrow 0} n(x)$

IV- 1) If $f(x)=\frac{\cos x}{x}$, then prove that: $-\frac{1}{x} \leq f(x) \leq \frac{1}{x}$, for all $x>0$.
2) Deduce: $\lim _{x \rightarrow+\infty} \frac{\cos x+x}{x}$
\boldsymbol{V} - Let f be the function defined by: $f(x)=\frac{5-3 x}{2 x+1}$
a. Determine the domain of definition of f.
b. Calculate the limits of f at the open boundaries of its domain.
c. Deduce asymptotes of f.

VI- Consider the rational functions defined respectively by: $f(x)=\frac{x+3}{2-x}$ and $g(x)=\frac{3 x-2}{(x+3)^{2}}$
a. Calculate limits of f as x tends to: $\pm \infty \& 2$.
b. Deduce the asymptotes of curve of f.
c. Calculate limits of g as x tends to: $\pm \infty \&-3$.
d. Deduce the asymptotes of curve of g.
VII- Which of the following functions admit asymptotes that are parallel to either of the coordinate axes? Justify and write equation of the asymptotes.
a) $f(x)=\frac{-2 x+1}{x+3}$
c) $k(x)=\frac{x-5}{x^{2}-2}$
e) $s(x)=\frac{x^{2}-2 x+3}{x-1}$
b) $g(x)=x^{2}+1$
d) $h(x)=\frac{-2}{x-1}$

VIII- Let g be the function defined by: $g(x)=\frac{3 x^{2}-2 x-1}{x+2}$ and its representative curve C_{g}.
a. Determine the interval over which the function g admits a curve.
b. Determine the real numbers $a, b \& c$ so that, for all $x \neq-2, g(x)=a x+b+\frac{c}{x+2}$.
c. Does the function g admit a vertical asymptote? Find it.
d. Calculate the $\lim _{x \rightarrow \pm \infty} g(x)$.
e. Calculate $\lim _{x \rightarrow \pm \infty}[g(x)-(a x+b)]$. Interpret the result graphically.
f. Study over the domain of g, the relative position of C_{g} with respect to the straight line (d) of equation $y=a x+b$.

Consider the function g defined by: $y=g(x)= \begin{cases}\frac{x^{2}+4 x-5}{x-1} & x<-2 \\ 2 x+7 & -2 \leq x<1 \\ x^{2}-2 a+1 & x \geq 1\end{cases}$
a. Determine the following limits of $g(x)$ as $x \rightarrow-\infty \& x \rightarrow 0$
b. Prove that the limit of g exists at $x=-2$
c. Find the numerical value of a, so that $\lim _{x \rightarrow 1} g(x)$ exists.
X - Find the value a if the limit of the given function exists:

$$
f(x)= \begin{cases}x^{2}-2 a & \text { for } x<2 \\ 3 a+x & \text { for } x>2\end{cases}
$$

XI- Consider the function f defined by $f(x)= \begin{cases}x+2 a-b & \text { for } x<1 \\ a+x+b-1 & \text { for } 1<x<3 \\ x^{2}-2 a-5 b & \text { for } x>3\end{cases}$
Find the values of $a \& b$ if $\lim _{x \rightarrow 1} f(x) \& \lim _{x \rightarrow 3} f(x)$ exist.
XII- Answer the following Questions:

\mathcal{N} o.	Questions	Curves
A.	i- Determine $f(2) \& \lim _{x \rightarrow+2} f(x)$. ii- Is f continuous at $x=2$?	
B.	1) Determine $g(-1) \& \lim _{x \rightarrow-1} g(x)$. 2) Is g continuous at $x=-1$?	
C.	a- Determine $h(0.5) \& \lim _{x \rightarrow+\frac{1}{2}} h(x)$. b- Is h continuous at $x=0.5$?	

XIII- Consider the function f defined by: $y=f(x)= \begin{cases}2 x^{2}+1 & x<0 \\ a x^{2}+3 x+1 & 0 \leq x<3 \\ \frac{b x^{2}-7}{x^{2}+2 x-1} & x>3 \\ c+3 & x=3\end{cases}$
a. Prove that f is continuous at $x=0 \forall a \in \mathbb{R}$.
b. Determine the value of b so that $y=-3$ is a horizontal asymptote of C_{f} at $+\infty$.
c. Find the values of $a \& c$ so that f is continuous at $x=3$.
$X I V$ - Consider the curve of the real function f :
Determine graphically:
a) The domain of f.
b) The limits:

- $\lim _{x \rightarrow-\infty} f(x)$
- $\lim _{x \rightarrow+\infty} f(x)$
- $\lim f(x)$
$-\lim f(x)$
$x \rightarrow 1$
$x<1$
$\underset{\substack{x \rightarrow 1 \\ x>1}}{ }$
- $\lim _{x \rightarrow-1} f(x)$
c) The equations of the given asymptotes.

$\boldsymbol{X V}$ - Consider the functions $f \& g$ defined by:

$f(x)=\left\{\begin{array}{lll}\frac{a x^{2}-4 x-12}{4-x^{2}} & x<-2 \\ -2 x-2 & -2 \leq x<3 \\ x^{2}+b & x \geq 3\end{array}\right.$	$g(x)= \begin{cases}\frac{x^{2}-x-2}{4-x^{2}} & x<-1 \\ 2 x-1 & -1 \leq x<3 \\ x^{2}+c & x \geq 3\end{cases}$
a) Find a so that $y=-1$ is an asymptote of C_{f} as $x \rightarrow-\infty$ 1) Does g admit a limit at $x=-1 ?$ b) If $a=1$, then study the continuity of f 2)Determine the value of c so that the at $x=-2$. function g is continuous at $x=3$	
c) Find b so that f is continuous at $x=3$	

