Lycée Des Arts Mathematics 9th-Grade Name: "Square roots " W.S-3 Perform the following calculations: 1. **a.** Show that $a = (\sqrt{3} - 1)^2 + \sqrt{12}$ is a natural number. **b.** Prove that $b = (\sqrt{6} - \sqrt{11})(\sqrt{6} + \sqrt{11})$ is an integer. c. Verify that $c = \frac{1}{2 + \sqrt{7}} + \frac{1}{2 - \sqrt{7}}$ is a rational number. d. Confirm that $\sqrt{(\pi-5)^2} + 3\sqrt{7-2\sqrt{12}} \times \sqrt{7+2\sqrt{12}} + \sqrt{(\pi-1)^2}$ belongs to set \mathbb{N} . and $Y = 2\sqrt{50} + \sqrt{72} - \sqrt{128}$. 2. Given: $X = -2\sqrt{7} - 3\sqrt{28} + 6\sqrt{63}$ **a.** Write X & Y in the form of $a\sqrt{b}$. **b.** Compare X and Y. c. Deduce if X - Y > 0. $A = 7 + 4\sqrt{3}$ and $B = 7 - 4\sqrt{3}$. Prove that $\frac{A}{B} + \frac{B}{A}$ and $\sqrt{A} \cdot \sqrt{B}$ numbers are integers: 3. Compare the numbers $3\sqrt{2}$ and $2\sqrt{5}$ then simplify $\sqrt{(3\sqrt{2}-2\sqrt{5})^2}$. 4. Develop $(1-\sqrt{3})^2$ then deduce another writing of $\sqrt{4-2\sqrt{3}}$ using only 1 radical sign. 5. Given: $R = \sqrt{7 - 4\sqrt{3}}$ and $N = \sqrt{9 + 4\sqrt{2}}$ 6. a. Write R and N in the form of one radical. **b.** Rationalize the denominator of $\frac{R}{r}$ 7. Let $ab = 2\sqrt{3}$ and $a + b = 2 + 2\sqrt{3}$ be the product and sum of any two real numbers, find the numerical value of: *iii.* (a-2)(b-2)*i.* $a^2b + ab^2$. *ii.* $a^2 + b^2$. 8. Given the two real numbers *a* and *b* such that: $a + b = \sqrt{3 + 2\sqrt{2}}$ and $ab = \sqrt{3 - 2\sqrt{2}}$. Compute and simplify the following: *a.* $\frac{1}{a} + \frac{1}{b}$. **b.** $a^2b + ab^2$. 9. Given: $a = \frac{1}{2\sqrt{13}-6}$ and $b = \frac{1}{2\sqrt{13}+6}$. Calculate: c. $a^2 - b^2$. $\frac{\sqrt{8} + 2}{\sqrt{5} + \sqrt{90}}$ **a.** ab. **b.** *a* + *b* 10. Calculate and simplify: $\frac{5\sqrt{2}}{2+\sqrt{2}} + \frac{10}{2-\sqrt{2}}$ and

9th-Grade.

Mathematics W.S-3. Square roots

Page 1 of 4

11.Consider the expressions: $E = \sqrt{48} + \sqrt{20}$ and $F = \sqrt{108} - \sqrt{45}$.

- *a. i*) Write *E* and *F* in the form $a\sqrt{3} + b\sqrt{5}$ where *a* & *b* are two integers.
 - *ii*) Verify that the product $E \times F$ is equal to a whole number.
- **b.** Write the expression $G = \frac{\sqrt{48} + \sqrt{20}}{\sqrt{108} + \sqrt{45}}$ in the form of an irreducible fraction.

12.Indicate with justification, the only correct answer for each of the following questions:

No.	Questions	Expected answers		
		${\mathcal A}$	${}^{\mathcal{B}}$	С
1.	The sign of $3\sqrt{2} - 5$ is	Positive	Negative	Cannot decide
2.	If $a = -\frac{\sqrt{2+\sqrt{3}}}{2}$ and $b = \frac{\sqrt{2}+\sqrt{6}}{4}$, then	a = b	a+b=0	a = 2b
3.	$\sqrt{(3.14 - \pi)^2} =$	0	$\pi - 3.14$	$3.14 - \pi$
4.	$\sqrt{16+9} =$	7	12	5
5.	$\sqrt{\left(2-\sqrt{2} ight)^2} =$	$2 - \sqrt{2}$	$2 + \sqrt{2}$	$\sqrt{2}-2$
6.	If $A(z) = \sqrt{\frac{9}{z^2} + \frac{6}{z} + 1}$ where $z + 3 < 0$ then, $A(z) =$	$\frac{z+3}{z}$	$\frac{z+3}{z}$	$\frac{3}{z} + 1 + \sqrt{\frac{6}{z}}$
7.	$\left[\sqrt{6} \times \sqrt{1 - \frac{\sqrt{5}}{3}}\right]^2 =$	$\sqrt{5} - \sqrt{6}$	$\left(\sqrt{5}-1\right)^2$	$\left(1+\sqrt{5}\right)^2$
8.	If $x < 0$ then, $\sqrt{\frac{x^2}{4} + \frac{4x^2}{9}} =$	$\frac{5x}{6}$	$-\frac{5x}{6}$	$\pm \frac{5x}{6}$
9.	If $c(O; \sqrt{8}) \& c'(O'; \sqrt{18})$ are two circles, so that $OO' = \sqrt{50}$, then $(c) \& (c')$ are	Tangent externally	Intersecting	Tangent internally

13. Suppose that $A = (5 + 2\sqrt{7})^2$ and $B = (5 - 2\sqrt{7})^2$.

- *a*. Expand then reduce the given expressions.
- **b.** Use the previous results to compute the expressions: $E = \frac{53 + 20\sqrt{7}}{5 + 2\sqrt{7}} \frac{53 20\sqrt{7}}{5 2\sqrt{7}}.$

c. Express the number $C = \sqrt{53 - 20\sqrt{7}}$ using only one radical sign.

14. Answer the following:

- *a.* Calculate $(1-\sqrt{2})^2$ then prove that: $x = \sqrt{3-2\sqrt{2}} \sqrt{3+2\sqrt{2}}$ is an integer.
- **b.** Evaluate $(\sqrt{3} \sqrt{5})^2$ then verify that: $(\sqrt{5} + \sqrt{3})\sqrt{8 2\sqrt{15}}$ is an integer.
- c. Calculate $E = x^3 + 3x^2y + 3xy^2 + y^3$ and $F = (x + y)^3$ for $x = \sqrt{5}$ and $y = \sqrt{2}$.
- *d.*Compare E and F.

- 15. a) Simplify $R = \sqrt{a^3 + a^2 a 1}$ such that *a* is greater than 1. b) Solve R = 0.
 - c) Determine the numerical value of R(2).
- 16. Carry out the following:
 - *a.* $(2\sqrt{5x} \sqrt{15x-1})(2\sqrt{5x} + \sqrt{15x-1})$ Where *x* is a strictly positive integer.
 - **b.** $\sqrt{75m-25} + \sqrt{108m-36}$. Where m > 1 **c.** $\left(x - \frac{1 - \sqrt{3}}{2}\right) \left(x + \frac{1 - \sqrt{3}}{2}\right)$. **d.** $\left(2\sqrt{3} - \sqrt{13}\right)^{51} \left(2\sqrt{3} + \sqrt{13}\right)^{51}$. **e.** $N = \frac{a^2 \left(\sqrt{3} + 1\right)^2}{4} + \frac{a^2 \left(\sqrt{3} - 1\right)^2}{4}$. Deduce the value of \sqrt{N} , where $a \ge 0$.
- 17. Prove the following identities: $\sqrt{4+\sqrt{7}} = \sqrt{\frac{7}{2}} + \sqrt{\frac{1}{2}} \qquad \sqrt{9+4\sqrt{5}} = 2+\sqrt{5} \qquad and \qquad \sqrt{2+\sqrt{3}} = \frac{\sqrt{3}+1}{\sqrt{2}}.$
- 18. a) Verify the equality: $(4 2\sqrt{3})(7 + 4\sqrt{3}) = (\sqrt{3} + 1)^2$. b) Deduce the solution of the following equation: $\frac{x}{4 - 2\sqrt{3}} = \frac{7 + 4\sqrt{3}}{r}$.
- 19. Write $A(x) = 2\sqrt{9x + 27y} + 5\sqrt{4x + 12y} 4\sqrt{16x + 48y}$ in the form of $a\sqrt{b}$
- 20. Consider a scalene $\triangle ABC$ such that $AB = \sqrt{7} + \sqrt{6}$, $AC = \frac{1}{\sqrt{7} \sqrt{6}}$ and $BC = \sqrt{14} + 2\sqrt{3}$.
 - *i*. Rationalize the denominator of AC.
 - *ii.* Prove that $\triangle ABC$ is a right isosceles triangle.
- 21. The dimensions of a rectangle are: $r = 7 + 2\sqrt{5}$ and $n = 3 + \sqrt{5}$.
 - **a.** Compute the expression: r n.
 - **b.** Deduce which dimension *rorn* is the width of the indicated rectangle.
 - *c*. Find the measure of the rectangle's diagonal.
 - *d*. Calculate the area and the perimeter of the given rectangle.
- 22. Given the two values of: $X = 4 + 6\sqrt{12} 2\sqrt{27} \& Y = 2 3\sqrt{48} + 4\sqrt{75}$.
 - *a*. Simplify the given numerical expressions.
 - *b.* If *X* and *Y* represent the measures of the bases of a trapezoid *RNPQ*, precise the measure of sides *RN* and that of *PQ*.
 - c. Calculate the measure of the altitude NH.
 - *d*. Deduce the area of the given trapezoid.

- 23. Given in a plane the three points A, B & C where $AB = 2\sqrt{3}$; $BC = \sqrt{75}$ and $AC = \sqrt{147}$. a. Verify that AB + BC = AC. **b.** What can you deduce about these three points? Given a square ABCD of side $(1 + \sqrt{5})cm$. 24. *a*. Enclose $(1+\sqrt{5})$ between two integers. **b.** Place $(1 + \sqrt{5})$ on a number line. c. Calculate the area of the given square. d. Find the radius of a circle (C) circumscribed about the given square. 25. Consider the three points A, B & C such that $AB = 5\sqrt{3}$; $BC = \sqrt{192}$ and $AC = \sqrt{27}$. a. Prove that the given points are collinear. **b.** Assume that (P) is a circle of diameter [AB] and center O. Calculate the measure of the tangent [CT] to (P). $(2\sqrt{5}+3)$ D 1) Expand the following $(2\sqrt{5}+3)^2$ and $[\sqrt{3}(\sqrt{5}+2)^2]^2$ 26. 2) Let \mathscr{G} be the area of the un-shaded domain (part) H √3(√5+2) J of the two given squares. Prove that \mathcal{F} is an integer. $Y = \left(2 - \sqrt{5}\right)^2$ 27.Consider the following expressions: Xand *a*. Show that: X = Y*b.* Prove that: is an integer. √2000 28. Consider the following rectangle: a. Write the dimensions of the adjacent rectangle W √1000 in simplest form possible. **b.** Judge the relation l = 2w. c. Express the area of the rectangle in the form $a\sqrt{2}$ where a is a natural number. Consider the two fixed points A and B and the variable point M to be the same plane. 29. a. Assume that $MA = \sqrt{x^4 + 2x^2 + 1}$ and MB = (2x + 3)(x + 1) - x(x + 5) - 2. *i*. Compare the measures of *MA* & *MB*. *ii.* Deduce in this part the locus of point *M*.
 - **b.** Now, take AB = 5, MA = 2x + 1 & $MB = 2\sqrt{6 x^2 x}$.
 - *i*. Verify that sum of the squares $MA^2 + MB^2$ is constant.
 - ii. Deduce again the locus the point M.

العلو خير من المال, المال تحرسه والعلو يحرسك

Mathematics W.S-3. Square roots