Al- Mandi High
Name:
I- If f is a function defined by: $f(x)=a x^{3}+b x^{2}-3 x^{3}+2 x^{2}+5 c-1$, then determine the real numbers $a, b \& c$ so that $f(0)=f^{\prime}(2)=3 \& f^{\prime}(-1)=5$.

II- Consider in the system (O, i, j) the function f defined by: $f(x)=a x^{2}+b x+c$ and its representative curve C_{f} and the tangent (d) to C_{f} at B.
a. Determine the values of x for which f is defined.
b. Use the graph to find coordinates of the points $A \& B$.
c. Deduce the numerical values of $a, b \& c$.

III- Consider the following table of variations of the differentiable functions $f \& g$.

Values of x	$-\infty$	0	$+\infty$	
Sign of $f^{\prime}(x)$		-	+	
Variation of f	2			

| Values of x | 0 | $+\infty$ |
| :---: | :--- | :--- | :--- |
| Sign of $g^{\prime}(x)$ | | - |
| Variation of g | $+\infty$ | |

a. Use table to determine the:
i. Domain and range of $f \& g$.
ii. $\quad f^{\prime}(0)$. What does is tell you?
iii. Asymptotes of the functions $f \& g$.
b. Relate each table with its appropriate graph.
c. Deduce the table of signs for each of the functions $f \& g$.

IV- Let f be a function defined by $f(x)=\frac{|x|}{|x|+1}$ and (C) its representative curve.

1. Study the differentiability of f at $x_{0}=0$.
2. Write the equations of the semi-tangents drawn from O to (C) (Al-Ahlia, P:140, Ex:21)
\boldsymbol{V} - Consider the function f defined by: $f(x)=\frac{2 x^{3}-3}{(x-1)^{2}}$
a. Determine the limits of $f(x)$ at the open boundaries of f.
b. Determine the derivative of $f(x)$.

VI- Consider the function f defined by: $f(x)= \begin{cases}\frac{r x+1}{x-1} & x<0 \\ n x^{2}+k x+3 & x \geq 0\end{cases}$
Determine the real values of $r, n \& k$ so that, the representative curve of f has a horizontal tangent at the point $S(2,-1)$ and a horizontal asymptote of equation $y=-1$
VII- Consider the function f defined by: $f(x)= \begin{cases}\frac{2 a+1}{x-1} & x \leq 0 \\ b x^{2}+c x-3 & x>0\end{cases}$
a. Determine the values of $a, b \& c$ so that, f is continuous at $x=0$, and its curve, C_{f}, admits the tangent $(T): y=-2 x-1$ at a point of abscissa $x=1$.
b. Let $a=1, b=-2 \& c=2$
i. Calculate: $\lim f(x)$.

$$
x \rightarrow \pm \infty
$$

ii. Does C_{f} admit an asymptote that is parallel to either of the coordinate axis? Justify.
c. Starting from the definition of derivative, study the differentiability of f at $x=0$ and interpret its graphical meaning.
d. Determine the coordinate of the:
i. Point A, at which C_{f} admits a horizontal tangent.
ii. Points of C_{f} where the tangent is perpendicular to the straight line $(d): 2 x+y=0$

VIII- Consider the function r defined by: $r(x)=a x+b+\frac{c}{x-2}$ where $a, b \& c$ are real numbers.
a. Find the domain of definition r.
b. Determine the values of $a, b \& c$, so that C_{r} has a horizontal tangent at $I(1,1)$ and another tangent at a point $B\left(0, y_{B}\right)$ whose slope is 0.75 .
c. Assume in this part that $a=b=c=1$
i. Calculate: $\lim _{x \rightarrow \pm \infty} r(x)$.
ii. Calculate: $\lim _{x \rightarrow \pm \infty}[r(x)-(x+1)]$. Interpret the result graphically.
iii. Study over the domain of r, the relative position of C_{r} with respect to the straight line (d) of equation $y=x+1$.
$\boldsymbol{I X}$ - Determine the real values of m so that the curve of a function f defined by $f(x)=\frac{2 m x-1}{(m-3) x+5}$ admits at the point of abscissa 2 a tangent of director coefficient -1.
\boldsymbol{X} - Given that $f(3)=1 \& f^{\prime}(3)=-3$.
Determine the derivative of $\frac{1}{[f(x)]^{2}}$ at $x=3$.

XI- Let f \& g be two functions defined over \mathbb{R} by: $f(x)=x^{2}-4$, $g(x)=|f(x)|$ \& part of C_{f}.

1) Determine the domain of $f \& g$ and study their parity.
2) Deduce the type of symmetry that curve of f admits.
3) Study the signs of $f(x) \& g(x)$.
4) Complete the graph of f and deduce that of g.
5) Is g differentiable at $x=2$? Justify.

XII- Take in the orthonormal system (O, \vec{i}, \vec{j}) the function h to be a function defined by: $h(x)=\frac{x^{2}+3 x+2}{x+5}$ and its representative curve C_{h}.
a. Find limits of h at the open boundaries of its domain.
b. Deduce the equations of the asymptotes that are parallel to either of the coordinate axis.
c. Prove that the point $I(-5,-7)$ is the center of symmetry of C_{h}.
d. Determine the derivative of h, and then set up the table of variation.
e. Prove that $h(x)$ can be written in the form: $h(x)=a x+b+\frac{c}{x+5}$, where $a, b \& c$ are real numbers to be determined.
f. Deduce that C_{h} admits an oblique asymptote whose equation is to be determined.
XIII- Consider the function f defined by its representative curve C_{f} :
a) Study graphically the continuity and differentiability of f at $x=0$.
b) Determine graphically:
i. $\lim _{x \rightarrow-\infty} f(x)$. Interpret your result graphically.
ii. $\quad f^{\prime}(2)$. Justify
iii. $\quad \lim _{x \rightarrow 1} f(x)$
c) Find the equation of (T) the tangent to C_{f} at A.
d) Deduce the value of $f^{\prime}(4)$

e) In this part suppose that f is defined by: $f(x)= \begin{cases}\frac{a x+b}{x-1} & x \leq 0 \\ c x^{3}+d x^{2}+4 x+e & x>0\end{cases}$
i. Utilize the given graph to prove that $a=b=1, c=0 \& d=e=-1$.
ii. Study starting from the definition, the differentiability of f at $x=0$.
f) Find the coordinate of the point(s) where C_{f} admits a tangent parallel to: $y=2 x+1$

XIV- How many maxima does the function f defined by: $f(x)=x^{4}-2 x^{2}+7$ admit? Justify.
$X V-A B C$ is an equilateral triangle of side $4 c m$. Let $M N P Q$ be a rectangle inscribed in this triangle.
Suppose $A M=x \mathrm{~cm}$. (Al-Ahlia, P:141, Ex:27)

1. Encircle x between two integers.
2. Determine the measure of side $[N P]$.
3. Calculate the area of the given rectangle.
4. For what values of x is the area of the given triangle maximum?

XVI- Consider a function f defined by its representative curve (C). The tangent (T) to (C) at the point $A(5 ; 4)$ passes through $B(2 ; 1)$. (Test: AlMahdi,2013-2014)
Use the curve (C) to answer the following questions:

1) Give the domain of definition of f.
2) Determine $\lim _{x \rightarrow+\infty} f(x) ; \lim _{x \rightarrow-\infty} f(x) ; \lim _{x \rightarrow 3} f(x)$.
3) Study graphically the continuity \& the differentiability of f at point $x=3$.
4) Determine $f^{\prime}(1)$ and $f^{\prime}(5)$.
5) Given the function g defined by: $g(x)=\frac{1}{f(x)-3}$
a) Give the domain of definition of g.
b) Determine $g(5) \& g^{\prime}(5)$.

6) Suppose that $f(x)=\left\{\begin{array}{ll}x^{2}-2 x & \text { if } x \leq 3 \\ \frac{-3 x+12}{x-2} & \text { if } x>3\end{array}\right.$.
7) By using the definition of the derivative, study the differentiability of f at $x=3$. XVII-Consider the curve (C) of a function f.
a. Compare with justification:
$f(-4) \ldots \ldots . . f(-3) ; f(100) . \ldots . .1$;
$f^{\prime}(1) \ldots . . f^{\prime}(-3)$ and $f^{\prime}(2.3) \ldots . . f^{\prime}(1300)$
b. The tangent to (C) at a point of abscissa $x=1$, is of equation: $2 x+y=0$
c. Calculate: $f(1) \& f^{\prime}(1)$
d. Let g be a function defined by: $g(x)=\frac{x^{2}}{2-f(x)}$.

e. Prove that g is defined for all real values of x.
f. Prove that equation of tangent to C_{g} at a point of abscissa $x=1$ is: $y+\frac{1}{4}=\frac{3}{2}(x-1)$.
