А	l- Mahdi High	Mathematics	11 th -Grade
Л	l'ame:	Derivatives	W.S-4
[-	If f is a function defined numbers $a, b \& c$ so that $f(0)$	by: $f(x) = ax^3 + bx^2 - 3x^3 + 2x^2 + 5c - 1$ f'(2) = 3 & f'(-1) = 5.	, then determine the real
[]-	Consider in the system (a) $f(x) = ax^2 + bx + c$ and it	\overrightarrow{i} , \overrightarrow{j}) the function f defined by: as representative curve C_f and the	(d)
	tangent (d) to C_f at B. a. Determine the values of	of x for which f is defined.	

- b. Use the graph to find coordinates of the points A & B.
- c. Deduce the numerical values of a, b & c.
- III- Consider the following table of variations of the differentiable functions f & g.

Values of x	$-\infty$	0	$+\infty$
Sign of $f'(x)$		- +	
Variation of f	c 2 -2 -2		2

Values of x	$\infty + \infty$		
Sign of $g'(x)$			
Variation of g	+∞ +1		

- *a*. Use table to determine the:
 - *i*. Domain and range of f & g.
 - *ii.* f'(0). What does is tell you?
 - *iii.* Asymptotes of the functions f & g.
- b. Relate each table with its appropriate graph.
- c. Deduce the table of signs for each of the functions f & g.

IV- Let *f* be a function defined by $f(x) = \frac{|x|}{|x|+1}$ and (*C*) its representative curve.

- 1. Study the differentiability of f at $x_0 = 0$.
- 2. Write the equations of the semi-tangents drawn from O to (C) (Al-Ahlia, P:140, Ex:21)
- V- Consider the function f defined by: $f(x) = \frac{2x^3 3}{(x-1)^2}$
 - a. Determine the limits of f(x) at the open boundaries of f.
 - b. Determine the derivative of f(x).

11th-Grade.

VI- Consider the function *f* defined by: $f(x) = \begin{cases} \frac{rx+1}{x-1} & x < 0\\ nx^2 + kx + 3 & x \ge 0 \end{cases}$

Determine the real values of r, n & k so that, the representative curve of f has a horizontal tangent at the point S(2,-1) and a horizontal asymptote of equation y = -1

- *VII* Consider the function *f* defined by: $f(x) = \begin{cases} \frac{2a+1}{x-1} & x \le 0\\ bx^2 + cx 3 & x > 0 \end{cases}$
 - *a*. Determine the values of *a*, *b* & *c* so that, *f* is continuous at x = 0, and its curve, C_f , admits the tangent (T): y = -2x 1 at a point of abscissa x = 1.
 - b. Let a = 1, b = -2 & c = 2
 - *i*. Calculate: $\lim_{x \to \pm \infty} f(x)$.
 - *ii.* Does C_f admit an asymptote that is parallel to either of the coordinate axis? Justify.
 - *c*. Starting from the definition of derivative, study the differentiability of f at x = 0 and interpret its graphical meaning.
 - *d*. Determine the coordinate of the:
 - *i*. Point A, at which C_f admits a horizontal tangent.
 - *ii.* Points of C_f where the tangent is perpendicular to the straight line (d): 2x + y = 0

VIII- Consider the function r defined by: $r(x) = ax + b + \frac{c}{x-2}$ where a, b & c are real numbers.

- a. Find the domain of definition r.
- b. Determine the values of a, b & c, so that C_r has a horizontal tangent at I(1,1) and another tangent at a point $B(0, y_B)$ whose slope is 0.75.
- *c*. Assume in this part that a = b = c = 1
 - *i.* Calculate: $\lim_{x \to \infty} r(x)$.

ii. Calculate: $\lim_{x \to +\infty} [r(x) - (x+1)]$. Interpret the result graphically.

- *iii.* Study over the domain of *r*, the relative position of C_r with respect to the straight line (*d*) of equation y = x + 1.
- IX- Determine the real values of m so that the curve of a function f defined by

 $f(x) = \frac{2mx-1}{(m-3)x+5}$ admits at the point of abscissa 2 a tangent of director coefficient -1.

X- Given that f(3) = 1 & f'(3) = -3.

Determine the derivative of $\frac{1}{[f(x)]^2}$ at x = 3.

XI- Let f & g be two functions defined over \mathbb{R} by: $f(x) = x^2 - 4$, g(x) = |f(x)| & part of C_f .

- 1) Determine the domain of f & g and study their parity.
- 2) Deduce the type of symmetry that curve of f admits.
- 3) Study the signs of f(x) & g(x).
- 4) Complete the graph of f and deduce that of g.
- 5) Is g differentiable at x = 2? Justify.

XII- Take in the orthonormal system (O, i, j) the function h to be a function defined by:

- $h(x) = \frac{x^2 + 3x + 2}{x + 5}$ and its representative curve C_h .
- a. Find limits of h at the open boundaries of its domain.
- b. Deduce the equations of the asymptotes that are parallel to either of the coordinate axis.
- c. Prove that the point I(-5,-7) is the center of symmetry of C_h .
- d. Determine the derivative of h, and then set up the table of variation.
- *e*. Prove that h(x) can be written in the form: $h(x) = ax + b + \frac{c}{x+5}$, where a, b & c are real numbers to be determined.
- f. Deduce that C_h admits an oblique asymptote whose equation is to be determined.

XIII- Consider the function f defined by its representative curve C_f :

- a) Study graphically the continuity and differentiability of f at x = 0.
- b) Determine graphically:
 - *i.* $\lim_{x \to -\infty} f(x)$. Interpret your result graphically.
 - *ii.* f'(2). Justify
 - *iii.* $\lim_{x \to 0} f(x)$
- c) Find the equation of (T) the tangent to C_f at A.
- d) Deduce the value of f'(4)
- e) In this part suppose that f is defined by: $f(x) = \begin{cases} \frac{ax+b}{x-1} & x \le 0\\ cx^3 + dx^2 + 4x + e & x > 0 \end{cases}$
 - *i*. Utilize the given graph to prove that a = b = 1, c = 0 & d = e = -1.
 - *ii.* Study starting from the definition, the differentiability of f at x = 0.
- f) Find the coordinate of the point(s) where C_f admits a tangent parallel to: y = 2x + 1

- *XIV* How many maxima does the function *f* defined by: $f(x) = x^4 2x^2 + 7$ admit? Justify.
- *XV- ABC* is an equilateral triangle of side 4cm.Let *MNPQ* be a rectangle inscribed in this triangle. Suppose AM = x cm. (*Al-Ahlia, P:141, Ex:27*)
 - 1. Encircle *x* between two integers.
 - 2. Determine the measure of side [*NP*].
 - 3. Calculate the area of the given rectangle.
 - 4. For what values of *x* is the area of the given triangle *maximum*?

XVI- Consider a function *f* defined by its representative curve (*C*). The tangent (*T*) to (*C*) at the point *A*(5;4) passes through *B*(2;1). (*Test: AlMahdi,2013-2014*)
Use the curve (*C*) to answer the following questions:

- 1) Give the domain of definition of f.
- 2) Determine $\lim_{x \to +\infty} f(x)$; $\lim_{x \to -\infty} f(x)$; $\lim_{x \to 3} f(x)$.
- 3) Study graphically the continuity & the differentiability of *f* at point x = 3.
- 4) Determine f'(1) and f'(5).
- 5) Given the function g defined by: $g(x) = \frac{1}{f(x)-3}$

a) Give the domain of definition of g.

b) Determine g(5) & g'(5).

6) Suppose that
$$f(x) = \begin{cases} x^2 - 2x & \text{if } x \le 3 \\ \frac{-3x + 12}{x - 2} & \text{if } x > 3 \end{cases}$$
.

7) By using the definition of the derivative, study the differentiability of f at x = 3. **XVII-** Consider the curve (*C*) of a function f.

- a. Compare with justification: f(-4).....f(-3); f(100).....1;f'(1).....f'(-3) and f'(2.3)....f'(1300)
- b. The tangent to (C) at a point of abscissa x = 1, is of equation: 2x + y = 0
- c. Calculate: f(1) & f'(1)
- *d*. Let *g* be a function defined by: $g(x) = \frac{x^2}{2 f(x)}$.
- e. Prove that g is defined for all real values of x.
- f. Prove that equation of tangent to C_g at a point of abscissa x = 1 is: $y + \frac{1}{4} = \frac{3}{2}(x-1)$.

