Name: Pofynomials \&f FractionalExpressions

1) Decompose the following into products of two or more factors and then solve each one if possible:

2) Consider the algebraic expressions:

$$
E=2 x(3 x+2) \text { and } F=9 x^{2}+12 x+4 .
$$

a. Solve the equation $E=0$.
b. Calculate for $x=\sqrt{2}$; the numerical value of F. Give the result in the form of $a+b \sqrt{2}$ where a and b are two integers.
c. i) Factorize the expression $E-F$.
ii) Deduce the values of x for which $E=F$.
3) Given the polynomial $P(x)=(3 x-m)(4 x+7)-9 x^{2}+25$.
a. Does the degree of the given polynomial depend on m ? Explain.
b. Calculate m so that (-2) is a root of $P(x)$.
c. Factorize $P(x)$, then deduce its roots so that $m=5$.
4) Given the two polynomials: $P(x)=x^{2}+2 x-3$ and $Q(x)=(x+1)^{2}-a$.
a. Calculate a so that the polynomials are identical.
b. Deduce the roots of $P(x)$.
c. Verify that $P(\sqrt{5}-1)$ is an integer.
5) Consider the polynomial: $S(x)=(2 m-1) x^{3}+(3 m-4) x^{2}+5 x-2$.

1- Determine m, if 1 is a zero of $S(x)$.
2- For which values of m, is $S(x)$ a $2^{\text {nd }}$ degree trinomial?
3- Indicate the degree of $S(x)$, if $m \neq 1 / 2$?
6) Consider the polynomial $N(x)=x^{2}-6 x+5$.

1- Show that $N(x)+4$ is a perfect square, deduce the factorization of $N(x)$.
2- Calculate the dimensions of a rectangle whose area is $5 \mathrm{~m}^{2}$ and its perimeter is 12 m .
3- Solve $N(x)>(x-3)^{2}$. Interpret your result.
4- Calculate a, b, and c if $N(x)$ is identical to $(a-b) x^{2}-2(a+b) x+4 a+c$.
7) The unit of length is $c m$ and x designates a non-zero positive integer. Consider a rectangle of dimensions $(x+1)$ and 4 , and an equilateral triangle of $\operatorname{side}(x+1)$. Designate by P_{1} the perimeter of the rectangle and by P_{2} that of the equilateral triangle.
a- Express P_{1} and P_{2} in terms of x.
b- For what values of x we have $P_{1}=P_{2}$?
c- Find x so that: $P_{1}<P_{2}$. Interpret obtained result.
d- Deduce for what values of $x: P_{1}>P_{2}$.
8) Given the expressions: $P(x)=(5 x-2)(5 x+8)$ and $Q(x)=(5 x+3)^{2}-25$.

1- Expand then reduce $P(x)$.
2- Factorize $Q(x)$.
3- $A B C$ is a right angled triangle at A such that: $A B=5$ and $B C=5 x+3$, where $x \geq 0$.
i. Show that: $A C^{2}=25 x^{2}+30 x-16$.
ii. For $x=2$, calculate the perimeter and the area of the triangle $A B C$.
9) Given the polynomial: $F(x)=(a+1) x^{3}-(b-1) x^{2}+c x+1$ where x is the variable.

1- Determine a, b, and c so that $G(x)=F(x)-1$ is identical to zero.
2- Determine a, b, and c so that $F(x)$ is identical to $(x-1)(x+1)(2 x-1)$.
10) Let $Q(x)=(2 x-1)(x-1)^{2}-4(2 x-1)$.
i. Factorize $Q(x)$.
ii. Solve the equation $Q(x)=0$.

2- Let $H(x)=\frac{Q(x)}{(x-1)(x+1)(2 x-1)}$.
i. For what values of x the fraction $H(x)$ is defined?
ii. Simplify $H(x)$.
iii. Solve $H(x)=0$ and $H(x)=2$.
11) Consider the following equation: $3 m x-2=2 x+5$.
a. Solve for x.
b. For what values of mis x defined?
c. Evaluate x for $m=-1 \& m=\sqrt{2}$.
12) If $n=\frac{-1+\sqrt{5}}{2}$, then compare n^{2} and $1-n$.

Explain without any calculations, why n is a solution of the equation: $x^{2}+x-1=0$.
13) Consider the polynomial: $R(x)=(x-2)^{2}+5(x-3)(2-x)+x^{2}-4$.

1- Develop and reduce $R(x)$.
2- Show that $R(x)=-3 x^{2}+3(7 x-10)$.
3- Write $R(x)$ as a product of two or more factors of first degree order.
4- Deduce the roots of $R(x)$.
5- Calculate $R(\sqrt{2})$.
14) Consider the polynomial: $N(x)=4-x^{2}+(x-2)(2 x+3)$.
a) Factorize $N(x)$ and then deduce its roots.
b) Develop and reduce $N(x)$ and then show that $N(x)+2=x(x-1)$.
c) Calculate $N(2 \sqrt{2}) \& N(\sqrt{3}-1)$.
15) Given the polynomial $P(x)=x^{2}-m+2(x-1)(x-2)$.

1) Determine the value of m so that +2 is a root of $P(x)$.
2) Factorize $P(x)$, if $m=4$.
3) Solve $P(x)=0$.
4) Give all natural numbers that verify $P(x) \geq 3 x^{2}-9$.
5) Consider the following polynomials:
$P(x)=(2 x+1)^{2}-(3 x-5)^{2} \quad$ and $Q(x)=4 x^{2}-25-(3 x+1)(-2 x+5)-20 x+50$.
a- Develop, reduce then order $P(x) \& Q(x)$.
Factorize $P(x) \& Q(x)$.
b- Solve the following equations:

$$
\begin{array}{ll}
\text { i- } & P(x)=0 \\
\text { ii- } & P(x)=Q(x) \\
\text { iii- } & Q(x)=10 x(x-3)
\end{array}
$$

17) Let $R=4 x^{2}-4 x-8$ and $N=2 x(x-2)^{2}$.

1- Show that $R+9$ is a perfect square, then factorize R.
2- Simplify $K=\frac{R}{N}$, then solve $K=0$.
3- Let $F=(2 x-a)^{2}-a b$, calculate a and b when $R \equiv F$.
18) The measures of sides of a $\triangle A B C$ are: $A B=3 x+6 ; A C=4 x+8 \& B C=5 x+10$.

1- Show that $\triangle A B C$ is right at A. (Where $x \geq 0$.)
2- Let $\left[A H\right.$) be the height relative to $[B C]$. Show that $\overline{A H}=\frac{12}{5}(x+2)$.
3- Compute the area S of the $\triangle A B C$, for $x=\sqrt{2}$, and express the result in the form $a+b \sqrt{2}$, where $a \& b$ are two integers to be determined.
19) Consider the polynomial: $P(x)=(x+8)\left(x^{2}+6 x+10\right)-(x+8)(x+6)$.

1. Develop, reduce and order $P(x)$.
2. Factorize $P(x)$, then solve the equation $P(x)=0$.
3. Consider the fraction: $F(x)=\frac{P(x)}{x^{2}+9 x+8}$.
a) Write the domain of definition of $F(x)$.
b) Simplify $F(x)$, then solve the equation $F(x)=10$.
20) Consider the trinomials:
$R(x)=(a+b) x^{2}+(a-b) x+5 c+1 \quad$ and $\quad N(x)=(2 a-1) x^{2}-(2-3 b) x+3 c-1$.
Find the numerical values of a, b, and c so that $R(x) \equiv N(x)$.
21) Given $P(x)=(2 x+3)^{2}+(6 x+9)(x-2)-4 x^{2}+9$ and $Q(x)=4 x^{2}+12 x+9$.

1- Factorize $P(x)$ and $Q(x)$.
2- Suppose in this part $P(x)=3 x(2 x+3)$ and $Q(x)=(2 x+3) .{ }^{2}$ Solve $P(x)=Q(x)$.
3- In this part, x represents a unit of length, such that $x>1$.

i. Calculate $H D$, then prove that the area of the trapezoid is: $P(x)$.
ii. Compute in terms of x the area of the triangle $E F G$.
iii. Find x so that the area of the trapezoid is double than that of the triangle $E F G$.
22) $M A N$ is a right triangle at A, such that $A M=2 x+1 \& A N=x+3$.

1) Let $P(x)$ be a polynomial defined by $P(x)=M N^{2}$.
a. Find the expression of $P(x)$.
b. Compute x such that $\triangle M A N$ is isosceles, then work out $M N^{2}$.
c. Solve $P(x)=50$.
d. Assume that $S(x)$, is area of $\triangle M A N$, write expression of $S(x)$, then calculate $S(2)$.
2) In this part $x>1$, and I is a point on $[A N]$ such that $\overline{A I}=2 x-1$.
i. Find the area of $\triangle I N M$.
ii. Can you find a value of x, so that $\Delta^{\prime} s I N M \& I A M$ have the same area? Explain.
3) If $N(x)=(x-2)^{2}-(x-1)(x-4)$, then Complete the following table:

x	$x-2$	$(x-2)^{2}$	$x-1$	$x-4$	$(x-1)(x-4)$	$N(x)$
10						
100						

1- Deduce the developed form of $N(x)$.
2- Deduce the value of $E=1234^{2}-1235 \times 1232$ without using a calculator
24) In this exercise, x is a unit of length expressed in cm .
$A B C D$ is a rectangle such that $A B=x-2 \& B C=3 x+1$.
$M N P$ is a triangle right at M, such that $M N=2(x-2) \& M P=x+10$.
Let S be the area of $A B C D$ and S^{\prime} be the area of $M N P$.

1) Calculate in terms of x the areas S and S^{\prime}.
2) Factorize $S-S^{\prime}$.
3) Calculate x, so that $S=S^{\prime}$.
4) Right triangles: Given that x is a strictly positive number.
1. For what values of x is a triangle of sides $x-1, x, x+1$ right?
2. Find the measure of sides of this triangle.
3. If $3 n, 4 n \& 5 n$, are the dimensions of a triangle, where n is non-zero natural number:
a) Complete the following table:

Value of n	$a=3 n$	$b=4 n$	$c=5 n$	a^{2}	b^{2}	c^{2}	$a^{2}+b^{2}$
2							
3							

b) Which entries of the above table are equivalent? Deduce the nature of this triangle.
c) State your conclusion?
26) Consider the adjacent figure, where quadrilateral $R N P Q$ is a square:

1- Solve the inequality: $2 x-3 \geq x+1$.
Note: in what follows $x \geq 4$.
2- Now, let $A(x)$ represent the area of quadrilateral $M N P K$.
i. Show that $A(x)=(2 x-3)^{2}-(2 x-3)(x+1)$.
ii. Expand $A(x)$.
iii. Factorize $A(x)$.
iv. Solve $(2 x-3)(x-4)=0$.

v. For what value of x, does the area of $M N P K$ equal to zero?
27) Part-A: Let $f(x)=(x+2)^{2}-4 x^{2}$.
i. Express $f(x)$, as a product of two binomials.
ii. Find the roots of $f(x)$.

Part-B: Given that x is an integer in $c m$ and $0<x<6$. Consider the rectangle ROME and the two squares RAIN and MUKS .
1- Show that $A(x)$, the area of the un shaded region is given by: $A(x)=104-x^{2}-(x+2)^{2}$.
2- a) Expand then reduce $A(x)$.
b) Verify that: $A(x)-52=-2(x-4)(x+6)$.

c) For what value of x the area of the un shaded region is $52 \mathrm{~cm}^{2}$.

3- Use Part-A to find the value of x so that the area of MUKS is four times that of RAIN. $9^{t h-G r a d e}$.

Mathematics W.S-4. Polynomial in one variable.
Page 5 of 6
28) Consider the polynomial: $E(x)=x^{3}+3-3 x^{2}-x$.

1- Write $E(x)$ in the form of a product of three first degree binomials.
2- a) Show that: $E(x+1)=x\left(x^{2}-4\right)$, then factorize: $E(x+1)-E(x-1)$.
b) Find all non-zero integers of x, so that $E(x+1)=E(x-1)$.
29) If $x-\frac{1}{x}=2$, then calculate $x^{2}+\frac{1}{x^{2}}$.
30) Consider a rectangle of perimeter 20 m and of length ℓ.
a) Express the area A in terms of ℓ.
b) Show that $A=25-(\ell-5)^{2}$.
c) Deduce the value of $\underline{\ell}$ for which the area of the given rectangle is maximum.
31) Consider the two expressions: $f(x)=4(x-5)+(x-2)^{2} \& q(x)=(x-2)^{2}-12(x-5)$.

1. Expand and reduce $f(x) \& q(x)$.
2. Factorize $f(x) \& q(x)$.
3. Solve:
i. $f(x)=20$.
ii. $\quad q(x)=0$.
iii. $\quad q(x)=25$.

4. In what follows x is a measure expressed in $c m$ such that $x>5$. In the above figure designate by $S(x)$ and $S^{\prime}(x)$ the respective areas of $A B C D$ and $E F G C$.
a. Express $S(x)$ and $S^{\prime}(x)$ in terms of x.
b. Determine area of $E F G C$ if : $S(x)=3 S^{\prime}(x)$.
32) One of the greatest mathematicians of his time, Leonhard Euler, claimed that the number $P=n^{2}+n+41$ is always a prime number for $n=0,1,2,3,4,5, \ldots$
a) Find the value of P for $n=0,1,2,3,4,5,6,7$ and 8 .
b) By making a suitable substitution, show that Euler's claim was worng.
33) If $x=2 \sqrt{2}+1$, then

1- Calculate the numerical values of: $x^{2} \& 2 x+7$.
2- Compare the obtained answers.
3- Deduce that: $x-2=\frac{7}{x}$.

