1. Decompose the following into products of two or more factors and then solve each one:
$A=a^{3}+a^{2}-4 a-4$
$B=4\left(x^{2}+14 x+49\right)-2 x^{2}+98$
$C=x^{5}+x^{2}-x^{3}-1$
$D=(a-2)\left(4 a^{2}+4 a+1\right)-(a-2)^{3}$
$E=4 x(3 x-1)-(x+2)(3 x-1)+3 x-1$
$F=(2 x+1)(4 x+3)-5 x(4 x+3)+(x-1)(4 x+3)$
$G=(2 x-3)(x-1)^{2}-4(2 x-3)$
$H=(x-3)(2 x+7)+(2 x-6)(3 x-1)-(9-3 x)(x+1)$
$I=(x+7)(x+4)+\left(9 x^{2}+24 x+16\right)$
$K=x^{6}-x^{4}-x^{2}+1$ $J=3 x^{2}-12+(x-4)(2-x)-\left(x^{2}-4 x+4\right)$
$M=2 x\left(x^{2}-1\right)-x(x+1)$
$L=(4 x-3)(-x+5)+(x-1)(x-5)+(2 x-5)(-x+5)$
$N=6\left(x^{2}-16\right)-(3 x+1)(x-4)+(8-2 x)(x+2)$
2. Choose, with justification the only correct answer:

No.	Problem	Expected answer		
		A	B	C
1.	The equation: $x(x+1)=(x-3)^{2}$ is verified for	one value of x	all values of x	no value of x (impossible)
2.	If e is any non-zero real number and $(e-1)$ is a solution for $p(x)=x^{2}+4 x-m+4$, then $m=$	$(e-1)(e+1)$	$(e-1)^{2}$	$(e+1)^{2}$
3.	The equation $\frac{4 x^{2}-9}{2 x+3}=0$ admits	A unique solution $x=\frac{-3}{2}$	Two solutions $x=\frac{-3}{2} \text { and } x=\frac{3}{2}$	A unique solution $x=\frac{3}{2}$
4.	If $\left(\frac{1}{2}\right)$ is a root of $p(x)=(3 x-a)(2 x+a)$, then	$a=\frac{3}{2}$ or $a=-1$	$a=6$ or $a=\frac{-1}{4}$	$a=\frac{-3}{2} \text { or } a=1$

3. Consider the following equation: $\frac{x-1}{x}=\frac{x}{x-1}$.
a. For what values of x is the above expression valid?
b. Does the above equation admit a solution in set of natural numbers? Explain.
4. Consider the following equation: $3 m x-2=2 x+5$.
a. Solve for x.
b. For what values of mis x defined?
c. Evaluate x for $m=-1$
5. Given the polynomial $P(x)=(3 x-m)(4 x+7)-9 x^{2}+25$.
a. Calculate m so that (-2) is a root of $P(x)$.
b. Factorize $P(x)$, then deduce its roots so that $m=5$.
6. Consider the polynomial $E(x)=(2 x-3)^{2}+(2 x-3)(5 x+1)$
a. Develop $E(x)$ and reduce in ascending order.
b. Factorize $E(x)$.
c. Solve $E(x)=0$.
7. Consider the algebraic expressions: $E=2 x(3 x+2)$ and $F=9 x^{2}+12 x+4$.
a. Solve the equation $E=0$.
b. i) Factorize the expression $E-F$.
ii) Deduce the values of x for which $E=F$.
8. The unit of length is cm and x designates a positive number. Consider a rectangle of dimensions $(x+1)$ and 4, and an equilateral triangle of side $(x+1)$. Designate by P_{1} the perimeter of the rectangle and by P_{2} that of the equilateral triangle.
a. Express P_{1} and P_{2} interms of x.
b. For what values of x we have:
i. $P_{1}=P_{2}$?
ii. $P_{1}<P_{2}$?
9. Given the expressions: $P(x)=(5 x-2)(5 x+8)$ and $Q(x)=(5 x+3)^{2}-25$.
a. Expand and reduce $P(x)$.
b. Factorize $Q(x)$.
c. $A B C$ is a right angled triangle at A such that: $A B=5$ and $B C=5 x+3$. Where x is a positive number.
i. Show that: $A C^{2}=25 x^{2}+30 x-16$.
ii. For $x=2$, calculate the perimeter and the area of the triangle $A B C$.
10. Let $Q(x)=(2 x-1)(x-1)^{2}-4(2 x-1)$.
a. Solve the equation $Q(x)=0$.
b. Let $H(x)=\frac{Q(x)}{(x-1)(x+1)(2 x-1)}$.
i. For what values of x the fraction $H(x)$ is defined?
ii. Simplify $H(x)$.
iii. Solve $H(x)=0$
iv. Does the rational expression $H(x)=2$ admit a solution?
11. Consider the polynomial: $R(x)=(x-2)^{2}+5(x-3)(2-x)+x^{2}-4$.
a. Express $R(x)$ in the form, $a x^{2}+b x+c$, where $a, b \& c$ are integers to be determined.
b. Show that $R(x)+3 x^{2}=3(7 x-10)$.
c. Write $R(x)$ as a product of two or more factors of first degree order.
d. Deduce the roots of $R(x)$.
12. Consider the polynomial: $N(x)=4-x^{2}+(x-2)(2 x+3)$.
a. Factorize $N(x)$ and then deduce its roots.
b. Develop and reduce $N(x)$ and then show that $N(x)+2=x(x-1)$.
13. Given the polynomial $P(x)=x^{2}-m+2(x-1)(x-2)$.
a. Determine the value of m so that +2 is a root of $P(x)$.
b. Factorize $P(x)$, if $m=4$.
c. Solve $P(x)=0$.
d. Give all natural numbers that verify $P(x) \geq 3 x^{2}-9$.
14. Let $F(x)=\frac{x^{2}-9+5(2 x-6)+3-x}{x^{2}-6 x+9}$.
a. Indicate for which values of x is $F(x)$ not defined?
b. Deduce the domain of definition of $F(x)$.
c. Simplify $F(x)$, then find roots of $F(x)$.
15.1) Expand and reduce the expression $E=(x-1)^{2}-(x-2)(x-3)$.
2) Use the preceding result to calculate the expression $A=(9999)^{2}-9998 \times 9997$.
16. Consider the following polynomials:

$$
P(x)=(2 x+1)^{2}-(3 x-5)^{2} \quad \text { and } Q(x)=4 x^{2}-25-(3 x+1)(-2 x+5)-20 x+50 .
$$

a. Develop, reduce then order $P(x) \& Q(x)$.
b. Factorize $P(x) \& Q(x)$.
c. Solve the following equations:
i. $\quad P(x)=0$.
ii. $\quad P(x)=20$.
iii. $\quad P(x)=Q(x)$.
17. Consider the polynomials:
$R(x)=(2 x-3)^{2}-x(8-5 x)-4 x+7 . \& N(x)=9 x^{2}-16+(8-6 x)(x+1)$
a. Prove that: $P(x)=(3 x-4)^{2}$.
b. Factorize $N(x)$.
c. Expand, reduce and order $N(x)$.
d. Solve the equations:
i. $\quad P(x)=25$.
ii. $\quad N(x)=-8$.
e. Compute the roots of $N(x)$.
f. Let $K(x)=\frac{P(x)}{N(x)}$.
i. Simplify $K(x)$.
ii. Solve $K(x)=-3$.
18. Given: $A=49-(2 x-3)^{2} \& B=(x-5)(x+2)+(5-x)(3-x)$.
a. Factorize then reduce $A \& B$.
b. Let $C=\frac{A}{B}$.
i. Simplify C.
ii. Solve the equations: $C=1 \& C=-1$.
iii. Evaluate the roots of C.
19. Consider the two polynomials: $f(x)=4 x^{2}-1+(2 x-1)^{2}-(2-4 x)(x+2)$;

$$
g(x)=(3 x+1)^{2}-(x+2)^{2}
$$

1) Develop and reduce $f(x)$.
2) Show that $f(x)=2(2 x-1)(3 x+2)$.
3) Write $g(x)$ in the form of a product of two factors of the first degree.
4) If $h(x)=\frac{f(x)}{g(x)}$, then simplify $h(x)$, and solve the equation $h(x)=2$.
20. Consider the algebraic expression: $R=n^{3}-n$, where n is a natural number Prove that R is:
a. A product of three consecutive numbers.
b. Divisible by 6 for all natural values of n.
21. Which is the shortest path from A to B given that each curve is a semi-circle?

flastering problems		
Chapter	Exercises	Pages
CH-: Powers	$1,3,7,9,10,12,13,17 \rightarrow 25$	$93 \rightarrow 99$

