\mathcal{A}	l- Mahdi High	Mathematics	11 th -Grade	
${\mathcal N}$	ame:	Polynomial functions	11 th -Grade W.S-5	
I- <u>P</u>	<i>I</i> - Consider the representative curve (C_f) of a function f , where $(C_f) \cap x - axis = \{0,3\}$, and (C_f) admits a minimum and a maximum at $x = 0$ & at $x = 2$ respectively. <u><i>Part-A</i></u> :			
2.	Use the graph to: <i>i</i> . Solve: $f(x)$: <i>ii</i> . Verify that (<i>iii</i> . Set up the take <i>iv</i> . Show that the	ble of variations of $f'(x)$. ere exist a real value $\alpha \in]2;3.5[$ so that $f(\alpha) = 0$. ly according to the real values <i>m</i> the number and the sign of $\alpha \in [2,3.5]$	o \vec{i} \vec{k}	
a b c.	Determine the cur answer. Find graphically equation of the ta Assume that <i>f</i> is c $f(x) = ax^3 + bx^2 + cx$ Determine <i>B</i> , the	x.Use (C_f) to find $a, b \& c$. inflection point of (C_f) action h defined by $h(x) = x^3 - 3x + 1$ admits an inflection point		
1. 2. 3. 4. 5.	Consider the funct representative cur Determine the lim Verify that $f'(x) =$ Deduce that $f(x) =$ Prove that $\alpha \in]-3$ Prove that (C_f) ad	tion f defined over \mathbb{R} by $f(x) = \frac{1}{4}x^4 - \frac{3}{2}x^2 + 2x + 2$ and have.		

IV- Consider the function f defined over \mathbb{R} by:

 $f(x) = mx^2 - (2m-1)x + m$, where *m* is a non-zero real parameter and designate by (C_m) its representative curve in an orthonormal system $(O; \vec{i}, \vec{j})$.

✓ <u>Part-A</u>:

- 1. Show that for all *m* different from 0, (C_m) passes through a fixed point *A*, whose coordinates are to be determined.
- 2. Show that (*l*): $x = \frac{2m-1}{2m}$ is the axis of symmetry of (*C_m*).
- 3. Let *B* be the symmetric of *A* with respect to (l).
 - a) Prove that the coordinates of *B* are $\left(\frac{m-1}{m}, 1\right)$
 - b) Show that the tangents at A and B to (C_m) are perpendicular.
- ✓ **<u>Part-B</u>**: In this part take m = -1
 - 1) Study the variations of f.
 - 2) Write the equations of the tangents to (C_{-1}) from the point R(2,2).
- *V* Let *f* be a function defined over \mathbb{R} by $f(x) = x^3 + x^2 + x + 2$ and designate by (*C*) its representative curve in an orthonormal system $(O; \vec{i}, \vec{j})$. (*Mastering, P:216, Ex:4*)
 - 1. Show that the point I of (C) of abscissa $\frac{-1}{3}$ is a center of symmetry of (C).
 - 2. Study the variations of (C).
 - 3. Does (C) admit an inflection point? Justify.
 - 4. Deduce that the equation g(x) = 0 admits a unique root $\alpha \in]-2,-1[$. Then trace(C).
- *VI* Consider the function f defined by $f(x) = x^2 (m-2)x + m 3$, where m is a real parameter and (C_m) its representative curve.
 - 1. Specify the condition for which a curve admits an axis of symmetry.
 - 2. Calculate the numerical value of m, so that:
 - a. x = 1 is an axis of symmetry of (C_m) .
 - b. f admits a minimum equals -4.
 - c. (C_m) is tangent to the abscissa axis.
 - 3. In this part take m = 4
 - Solve in \mathbb{R}
 - a. |f(x)| = 1
 - b. f(x) < 4

VII- Consider the table of variations of a function *f* whose representative curve, in an orthonormal system, is (*C*).

- 1) Copy and complete the above table of variations, then find the domain of definition of f.
- 2) Find the limits of f at the bounds of the domain of definition.
- 3) Deduce the equations of the asymptotes of (C). Is f odd? Justify.
- 4) What is the number of solutions of the equation: f(x) = 0? Justify, and then draw(C).

VIII- Let (C_f) be the representative curve of a function f defined by its table of variations: Part-A:

- 1) Prove that f is not an odd function over its domain.
- 2) If f(-2)=0, then deduce the sign of f(x).
- 3) Study according to the real parameter *m*, the number of solutions of f(x) = m.
- 4) Compare with justification, $f(10^6) \& f(10^8)$, then trace (C_f) .

Part-B:

In this part we admit that $f(x) = x^3 - 3x + 2$ is the image of the given function f.

- 1. Determine the equation of (L), the tangent to (C_f) at x = 2.
- 2. Let g be a real valued function defined by its image: $g(x) = |x^3| 3|x| + 2$
 - a. Use (C_f) to trace the (C_g) .
 - b. Is g differentiable at x = 0? Justify.

3. Let *h* be another real valued function defined by its image: $h(x) = \frac{2x-1}{\sqrt{f(x)}}$

- a. Determine the domain of definition of h.
- b. Calculate the numerical value of h'(-1)
- c. Which of the given graphs is that of h? Justify.

Mathematics. W.S-5 Polynomial functions

- *IX* Let *f* be the function defined over \mathbb{R} by $f(x) = x^2 4x + 3$ and designate by(*C*) its representative curve in an orthonormal system $\left(O; \vec{i}, \vec{j}\right)$. (*Mastering, P:216, Ex:3*)
 - 1. Study the variations of f and trace(C).
 - 2. Prove that (C) admits an axis of symmetry, whose equation is to be determined.
 - 3. Show *again* that the straight line (δ) : x = 2 is an axis of symmetry of (C).
 - 4. Write an equation of the tangent (T) to (C) at a point A of (C) of abscissa 1.
 - 5. Let (d) be a straight line passing through B(2,-3) and of slope m.
 - a. Express in terms of m the equation of (d).
 - b. Discuss according to the values of m, the number of points of intersection of (d) &(C).
 - c. Deduce the equations of the tangents through the point B(2,-3) to (C).
 - 6. Construct the representative curve (C_g) , of the function g defined on \mathbb{R} by
 - $g(x) = x^2 4|x| + 3.$