I- Consider the representative curve $\left(C_{f}\right)$ of a function f, where $\left(C_{f}\right) \cap x$-axis $=\{0,3\}$, and $\left(C_{f}\right)$ admits a minimum and a maximum at $x=0 \&$ at $x=2$ respectively.

Part-A:

1. Determine the domain of definition of f.
2. Use the graph to:
i. Solve: $f(x) \leq 0 \& f(x)>0$.
ii. Verify that $0 \& 2$ are roots of $f^{\prime}(x)$.
iii. Set up the table of variations of f.
i. Show that there exist a real value $\alpha \in] 2 ; 3.5$ [so that $f(\alpha)=0$.

3. Discuss graphically according to the real values m the number and the sign of the roots of the equation $f(x)=m$.
Part-B: One of the curves $\left(C_{H}\right) \operatorname{or}\left(C_{P}\right)$ below represents the derivative function f^{\prime} of f.
a. Determine the curve of f^{\prime}. Justify your answer.
b. Find graphically $f^{\prime}(1)$, then deduce the equation of the tangent to $\left(C_{f}\right)$ at $x=1$.
c. Assume that f is defined by: $f(x)=a x^{3}+b x^{2}+c x$. Use $\left(C_{f}\right)$ to find $a, b \& c$.
d. Determine B, the inflection point of $\left(C_{f}\right)$

II- Prove that the function h defined by $h(x)=x^{3}-3 x+1$ admits an inflection point, whose coordinates are to be determined.
III- Consider the function f defined over \mathbb{R} by $f(x)=\frac{1}{4} x^{4}-\frac{3}{2} x^{2}+2 x+2$ and let $\left(C_{f}\right)$ be its representative curve.

1. Determine the limits of f at $\pm \infty$.
2. Verify that $f^{\prime}(x)=(x+2)(x-1)^{2}$, and then draw a table of variation of f.
3. Deduce that $f(x)=0$ admits two distinct roots $\alpha \& \beta$.
4. Prove that $\alpha \in]-3 ;-2.5[\quad \& \quad \beta \in]-1 ;-0.5[$;
5. Prove that $\left(C_{f}\right)$ admits two inflection points, then draw $\left(C_{f}\right)$.
6. Deduce $\left(C_{g}\right)$ the representative curve of the function g defined over \mathbb{R} where $g(x)=|f(x)|$.

IV- Consider the function f defined over \mathbb{R} by:
$f(x)=m x^{2}-(2 m-1) x+m$, where m is a non-zero real parameter and designate by $\left(C_{m}\right)$ its representative curve in an orthonormal system $(O ; \vec{i}, \vec{j})$.

\checkmark Part-A:

1. Show that for all m different from $0,\left(C_{m}\right)$ passes through a fixed point A, whose coordinates are to be determined.
2. Show that $(l): x=\frac{2 m-1}{2 m}$ is the axis of symmetry of $\left(C_{m}\right)$.
3. Let B be the symmetric of A with respect to (l).
a) Prove that the coordinates of B are $\left(\frac{m-1}{m}, 1\right)$
b) Show that the tangents at A and B to $\left(C_{m}\right)$ are perpendicular.
\checkmark Part-B: In this part take $m=-1$
1) Study the variations of f.
2) Write the equations of the tangents to $\left(C_{-1}\right)$ from the point $R(2,2)$.
\boldsymbol{V} - Let f be a function defined over \mathbb{R} by $f(x)=x^{3}+x^{2}+x+2$ and designate by (C) its representative curve in an orthonormal system $(O ; \vec{i}, \vec{j})$. (Mastering, P:216, Ex:4)
1. Show that the point I of (C) of abscissa $\frac{-1}{3}$ is a center of symmetry of (C).
2. Study the variations of (C).
3. Does (C) admit an inflection point? Justify.
4. Deduce that the equation $g(x)=0$ admits a unique root $\alpha \in]-2,-1[$. Then trace (C).

VI- Consider the function f defined by $f(x)=x^{2}-(m-2) x+m-3$, where m is a real parameter and $\left(C_{m}\right)$ its representative curve.

1. Specify the condition for which a curve admits an axis of symmetry.
2. Calculate the numerical value of m, so that:
a. $x=1$ is an axis of symmetry of $\left(C_{m}\right)$.
b. f admits a minimum equals -4 .
c. $\left(C_{m}\right)$ is tangent to the abscissa axis.
3. In this part take $m=4$

Solve in \mathbb{R}
a. $|f(x)|=1$
b. $f(x)<4$

VII- Consider the table of variations of a function f whose representative curve, in an orthonormal system, is (C).

x	$-\infty$		-3	-1		0		2	3		$+\infty$		
$f^{\prime}(x)$		+	Q	-		+		-	O	+		-	
$f(x)$			5										
	2						-3		-5				-2

1) Copy and complete the above table of variations, then find the domain of definition of f.
2) Find the limits of f at the bounds of the domain of definition.
3) Deduce the equations of the asymptotes of (C). Is f odd? Justify.
4) What is the number of solutions of the equation: $f(x)=0$? Justify, and then draw (C).

VIII- Let $\left(C_{f}\right)$ be the representative curve of a function f defined by its table of variations: Part-A:

1) Prove that f is not an odd function over its domain.
2) If $f(-2)=0$, then deduce the sign of $f(x)$.
3) Study according to the real parameter m, the number of solutions of $f(x)=m$.
4) Compare with justification, $f\left(10^{6}\right) \& f\left(10^{8}\right)$, then trace $\left(C_{f}\right)$.

Part-B:
In this part we admit that $f(x)=x^{3}-3 x+2$ is the image of the given function f.

1. Determine the equation of (L), the tangent to $\left(C_{f}\right)$ at $x=2$.
2. Let g be a real valued function defined by its image: $g(x)=\left|x^{3}\right|-3|x|+2$
a. Use $\left(C_{f}\right)$ to trace the $\left(C_{g}\right)$.
b. Is g differentiable at $x=0$? Justify.
3. Let h be another real valued function defined by its image: $h(x)=\frac{2 x-1}{\sqrt{f(x)}}$
a. Determine the domain of definition of h.
b. Calculate the numerical value of $h^{\prime}(-1)$
c. Which of the given graphs is that of h ? Justify.

$\boldsymbol{I X}$ - Let f be the function defined over \mathbb{R} by $f(x)=x^{2}-4 x+3$ and designate by (C) its representative curve in an orthonormal system $(O ; \vec{i}, \vec{j})$.(Mastering, P:216, Ex:3)
4. Study the variations of f and trace (C).
5. Prove that (C) admits an axis of symmetry, whose equation is to be determined.
6. Show again that the straight line $(\delta): x=2$ is an axis of symmetry of (C).
7. Write an equation of the tangent (T) to (C) at a point A of (C) of abscissa 1 .
8. Let (d) be a straight line passing through $B(2,-3)$ and of slope m.
a. Express in terms of m the equation of (d).
b. Discuss according to the values of m, the number of points of intersection of (d) $\&(C)$.
c. Deduce the equations of the tangents through the point $B(2,-3)$ to (C).
9. Construct the representative curve $\left(C_{g}\right)$, of the function g defined on \mathbb{R} by $g(x)=x^{2}-4|x|+3$.
