Al Mahdi School	s Mathematics	10 th -Grade
Name:	"Vectors & Vector Coordinates"	W.S-5.

- *I* Answer with *justification* by *True* or *False*.
 - 1. If $\overrightarrow{AC} = \overrightarrow{BD}$ then, $\overrightarrow{AB} = \overrightarrow{CD}$.
 - 2. If AC = BD then, AC = BD.
 - 3. If ABCD is a rectangle such that AB = 6cm & AD = 4cm then, $\|CB + CD\|$
 - 4. If $\overrightarrow{AB} = k \overrightarrow{CD}$ where $k \in Z^{*-}$, then: a. Vectors \overrightarrow{AB} and \overrightarrow{CD} are of the same sense. b. Vectors \overrightarrow{AB} and \overrightarrow{CD} have same direction. c. $\|\overrightarrow{AB}\| = k \|\overrightarrow{CD}\|$.
 - 5. If A, B & C are any three non-collinear point, so that $\vec{n} = 3\overrightarrow{AB} 2\overrightarrow{AC}$ and $\vec{s} = 3\overrightarrow{AB} + 2\overrightarrow{BC}$ then the coordinates of $\vec{n} \& \vec{s}$ in the system $(A; \overrightarrow{AB}, \overrightarrow{AC})$ are $\vec{s}(2,1) \& \vec{n}(-3,2)$
 - 6. If *ABC* is a right isosceles triangle at *A*, so that AB = 6cm, and the point *J* is defined by $\overrightarrow{JB} = \frac{3}{2}\overrightarrow{AC}$, then the coordinates of *J* in the system $\left(O; \frac{1}{3}\overrightarrow{AB}, \frac{1}{3}\overrightarrow{AC}\right)$ are J(3,5)
 - 7. In the system (O, \vec{i}, \vec{j}) :
 - a. The two vectors: $\vec{u} = \vec{i} + \vec{j}$, $\vec{v} = \vec{i} \vec{j}$ represent basis.
 - b. If the vectors $\vec{a}(3,2m-1)$ & $\vec{s} = \vec{i} 2m\vec{j}$ are collinear, then m = 2

II- Consider in a given plane the two distinct points A & B and a point G defined by the vector relation: $\overrightarrow{GB} - 2\overrightarrow{AG} = \overrightarrow{0}$.

- a. Construct the point G.
- b. If N is any point of the given plane, then express: 2 NA + NB as a function of NG.
- c. Determine the locus of the set of points N in the plane such that: $\left\| 2\vec{NA} + \vec{NB} \right\| = 3\left\| \vec{NA} \right\|$

 $2\sqrt{13}cm$.

III- The adjacent figure represents a parallelogram *ABCD*.

- *a*. Construct the points *E* & *F* such that $\overrightarrow{AB} = 3\overrightarrow{BE} & \overrightarrow{DF} = 3\overrightarrow{AD}$.
- *b.* 1) Calculate *a* & *b* so that, $\overrightarrow{CF} = a\overrightarrow{AB} + b\overrightarrow{AD}$.
 - 2) Calculate *m* & *n* so that, $\overrightarrow{EC} = m\overrightarrow{AB} + n\overrightarrow{AD}$.
 - 3) Deduce that the points *E*, *C* & *F* are collinear.
- c. Consider the reference frame defined by (A, \vec{i}, \vec{j}) , where $\vec{i} = \overrightarrow{AB} \& \vec{j} = \overrightarrow{AD}$.
 - i. Find coordinates of all points in the given plane.
 - ii. Deduce using coordinates that the points E, C & F are collinear

IV- Let *ABC* be any triangle and $x \in Z^*$ so that $\overrightarrow{AE} = \frac{1}{3}\overrightarrow{AB} + x \cdot \overrightarrow{AC}$ and $\overrightarrow{AM} = x \cdot \overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$.

- a. Find \overrightarrow{EF} in terms of BC & x.
- b. For what values of x, the vectors \overrightarrow{EF} and \overrightarrow{BC} have the same sense?
- c. Calculate the numerical value of x, such that BCFE is a parallelogram.
- *V* Consider the point G, the centroid of triangle ABC, and the point M to be any point in the plane of the given triangle.
 - *a.* Show that: $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3 \overrightarrow{MG}$.
 - b. Consider the vector: $\overrightarrow{U} = 3 \overrightarrow{MA} + 2 \overrightarrow{MB} 5 \overrightarrow{MC}$.
 - i. Express vector \vec{U} independent of M.
 - ii. Find the set of points *M* for $\|\overline{MA} + \overline{MB} + \overline{MC}\| = 6$ units.
 - c. Let D be a point defined by $\overrightarrow{AD} = -2\overrightarrow{AB} + 3\overrightarrow{AC}$.
 - i. Show that $\overrightarrow{BD} = k \cdot \overrightarrow{BC}$, where k is a real number to be determined.
 - ii. Deduce that the points B, D & C are collinear.
- *VI* Let *ABC* be any triangle and *D* be a point defined by: $\overrightarrow{AD} = 3\overrightarrow{AB} 2\overrightarrow{AC}$. *a.* Prove that the points *B*,*C*&*D* are collinear, then place *D*.

b. Take E & F to be any two points defined by: $\overrightarrow{AE} = \overrightarrow{AC} + 2\overrightarrow{AB}$ and $\overrightarrow{AF} = 5\overrightarrow{AB} - 8\overrightarrow{AC}$.

Express the vectors \overrightarrow{DE} then \overrightarrow{DF} in terms of $\overrightarrow{AB} \& \overrightarrow{AC}$.

• Verify that
$$\overrightarrow{DF} + 2\overrightarrow{DE} = \overrightarrow{0}$$
.

D

С

- **VII-** Consider the plane of reference (O, \vec{i}, \vec{j}) the vectors $\vec{V} = -2\vec{i} + 3\vec{j}$ and the points
 - A(1;-2), B(3;-4), C(-1;2) and the point M such that $\overrightarrow{OM} = x\vec{i} + y\vec{j}$.
 - 1) Calculate the coordinates of vector $\vec{U} = 2\vec{OB} 3\vec{OC} + 3\vec{BA}$.
 - 2) Find a relation between x & y so that the point A, B & M are collinear.
 - 3) Determine the real values of x & y where, $\overrightarrow{AM} = -2\overrightarrow{V}$.
 - 4) Find the coordinates of the points A, B & M in the system (C, \vec{i}, \vec{j}) .

VIII- Consider the plane of reference (o, \vec{i}, \vec{j}) the points A, B, C, D & M such

that: $\overrightarrow{OA} = -\overrightarrow{i} - \overrightarrow{j}, \overrightarrow{OB} = 4\overrightarrow{i}, \ \overrightarrow{OC} = 4(\overrightarrow{i} + \overrightarrow{j}), \ \overrightarrow{OD} = -\overrightarrow{i} + 2\overrightarrow{j} \And \overrightarrow{OM} = x\overrightarrow{i} + y\overrightarrow{j}.$

- *a*. Show that *ABCD* is a parallelogram.
- **b.** Calculate the coordinates of the point E so that, $\vec{AE} = 2\vec{AB}$.
- c. Find the coordinates of the point F so that BCFD is a parallelogram.
- *d*. Show that the points are collinear.
- e. In the new reference $(A, \vec{i} + \vec{j}, -\vec{i} + 2\vec{j})$ the coordinates of the point *M* becomes M(X;Y).
 - 1) Find a relation between coordinates of M in the two reference frames.
 - 2) Deduce the coordinates of the points A, B, C & D in the new system.

Mastering problems		
Chapter	Exercises	Pages
CH-7: Vectors	1,2 & 4	141
	6	142
	9	143
	15 & 16	145
	18 & 19	146