```
AlMahdi Schools Mathematics 10 th_Grade
Name:........ "Vectors &\mathcal{L Vector Coordinates" W.S-5.}
```

I- Answer with justification by True or False.

1. If $\overrightarrow{A C}=\overrightarrow{B D}$ then, $\overrightarrow{A B}=\overrightarrow{C D}$.
2. If $A C=B D$ then, $\overrightarrow{A C}=\overrightarrow{B D}$.
3. If $A B C D$ is a rectangle such that $A B=6 \mathrm{~cm} \& A D=4 \mathrm{~cm}$ then, $\|\overrightarrow{C B}+\overrightarrow{C D}\|=2 \sqrt{13} \mathrm{~cm}$.
4. If $\overrightarrow{A B}=k \overrightarrow{C D}$ where $k \in Z^{*-}$, then:
a. Vectors $\overrightarrow{A B}$ and $\overrightarrow{C D}$ are of the same sense.
b. Vectors $\overrightarrow{A B}$ and $\overrightarrow{C D}$ have same direction.
c. $\|\overrightarrow{A B}\|=k\|\overrightarrow{C D}\|$.
5. If $A, B \& C$ are any three non-collinear point, so that $\vec{n}=3 \overrightarrow{A B}-2 \overrightarrow{A C}$ and $\vec{s}=3 \overrightarrow{A B}+2 \overrightarrow{B C}$ then the coordinates of $\vec{n} \& \vec{s}$ in the system $(A ; \overrightarrow{A B}, \overrightarrow{A C})$ are $\vec{s}(2,1) \& \vec{n}(-3,2)$
6. If $A B C$ is a right isosceles triangle at A, so that $A B=6 \mathrm{~cm}$, and the point J is defined by $\overrightarrow{J B}=\frac{3}{2} \overrightarrow{A C}$, then the coordinates of J in the system $\left(O ; \frac{1}{3} \overrightarrow{A B}, \frac{1}{3} \overrightarrow{A C}\right)$ are $J(3,5)$
7. In the system $(\widehat{O}, \vec{i}, \vec{j})$:
a. The two vectors: $\vec{u}=\vec{i}+\vec{j}, \vec{v}=\vec{i}-\vec{j}$ represent basis.
b. If the vectors $\vec{a}(3,2 m-1) \& \vec{s}=\vec{i}-2 m \vec{j}$ are collinear, then $m=2$

II- Consider in a given plane the two distinct points $A \& B$ and a point G defined by the vector relation: $\overrightarrow{G B}-2 \overrightarrow{A G}=\overrightarrow{0}$.
a. Construct the point G.
b. If N is any point of the given plane, then express: $2 \overrightarrow{N A}+\overrightarrow{N B}$ as a function of $\overrightarrow{N G}$.
c. Determine the locus of the set of points N in the plane such that: $\|2 \overrightarrow{N A}+\overrightarrow{N B}\|=3\|\overrightarrow{N A}\|$

III- The adjacent figure represents a parallelogram $A B C D$.
a. Construct the points $E \& F$ such that $\overrightarrow{A B}=3 \overrightarrow{B E} \& \overrightarrow{D F}=3 \overrightarrow{A D}$.
b. 1) Calculate $a \& b$ so that, $\overrightarrow{C F}=a \overrightarrow{A B}+b \overrightarrow{A D}$.
2) Calculate $m \& n$ so that, $\overrightarrow{E C}=m \overrightarrow{A B}+n \overrightarrow{A D}$.

3) Deduce that the points $E, C \& F$ are collinear.
c. Consider the reference frame defined by (A, \vec{i}, \vec{j}), where $\vec{i}=\overrightarrow{A B} \& \vec{j}=\overrightarrow{A D}$.
i. Find coordinates of all points in the given plane.
ii. Deduce using coordinates that the points $E, C \& F$ are collinear
$I V$ - Let $A B C$ be any triangle and $x \in Z^{*}$ so that $\overrightarrow{A E}=\frac{1}{3} \overrightarrow{A B}+x \cdot \overrightarrow{A C}$ and $\overrightarrow{A M}=x \cdot \overrightarrow{A B}+\frac{1}{3} \overrightarrow{A C}$.
a. Find $\overrightarrow{E F}$ in terms of $\overrightarrow{B C} \& x$.
b. For what values of x, the vectors $\overrightarrow{E F}$ and $\overrightarrow{B C}$ have the same sense?
c. Calculate the numerical value of x, such that $B C F E$ is a parallelogram.
V - Consider the point G, the centroid of triangle $A B C$, and the point M to be any point in the plane of the given triangle.
a. Show that: $\overrightarrow{M A}+\overrightarrow{M B}+\overrightarrow{M C}=3 \overrightarrow{M G}$.
b. Consider the vector: $\vec{U}=3 \overrightarrow{M A}+2 \overrightarrow{M B}-5 \overrightarrow{M C}$.
i. Express vector \vec{U} independent of M.
ii. Find the set of points M for $\|\overrightarrow{M A}+\overrightarrow{M B}+\overrightarrow{M C}\|=6$ units.
c. Let D be a point defined by $\overrightarrow{A D}=-2 \overrightarrow{A B}+3 \overrightarrow{A C}$.
i. Show that $\overrightarrow{B D}=k \cdot \overrightarrow{B C}$, where k is a real number to be determined.
ii. Deduce that the points $B, D \& C$ are collinear.

VI- Let $A B C$ be any triangle and D be a point defined by: $\overrightarrow{A D}=3 \overrightarrow{A B}-2 \overrightarrow{A C}$.
a. Prove that the points $B, C \& D$ are collinear, then place D.
b. Take $E \& F$ to be any two points defined by: $\overrightarrow{A E}=\overrightarrow{A C}+2 \overrightarrow{A B}$ and $\overrightarrow{A F}=5 \overrightarrow{A B}-8 \overrightarrow{A C}$.

Express the vectors $\overrightarrow{D E}$ then $\overrightarrow{D F}$ in terms of $\overrightarrow{A B} \& \overrightarrow{A C}$.
c. Verify that $\overrightarrow{D F}+2 \overrightarrow{D E}=\overrightarrow{0}$.

VII- Consider the plane of reference (O, \vec{i}, \vec{j}) the vectors $\vec{V}=-2 \vec{i}+3 \vec{j}$ and the points $A(1 ;-2), B(3 ;-4), C(-1 ; 2)$ and the point M such that $\overrightarrow{O M}=x \vec{i}+y \vec{j}$.

1) Calculate the coordinates of vector $\vec{U}=2 \overrightarrow{O B}-3 \overrightarrow{O C}+3 \overrightarrow{B A}$.
2) Find a relation between $x \& y$ so that the point $A, B \& M$ are collinear.
3) Determine the real values of $x \& y$ where, $\overrightarrow{A M}=-2 \vec{V}$.
4) Find the coordinates of the points $A, B \& M$ in the $\operatorname{system}(C, \vec{i}, \vec{j})$.

VIII- Consider the plane of reference (o, \vec{i}, \vec{j}) the points $A, B, C, D \& M$ such
that: $\overrightarrow{O A}=-\vec{i}-\vec{j}, \overrightarrow{O B}=4 \vec{i}, \overrightarrow{O C}=4(\vec{i}+\vec{j}), \overrightarrow{O D}=-\vec{i}+2 \vec{j} \& O \overrightarrow{O M}=x \vec{i}+y \vec{j}$.
a. Show that $A B C D$ is a parallelogram.
b. Calculate the coordinates of the point E so that, $\overrightarrow{A E}=2 \overrightarrow{A B}$.
c. Find the coordinates of the point F so that $B C F D$ is a parallelogram.
d. Show that the points are collinear.
\boldsymbol{e}. In the new reference $(A, \vec{i}+\vec{j},-\vec{i}+2 \vec{j})$ the coordinates of the point M becomes $M(X ; Y)$.

1) Find a relation between coordinates of M in the two reference frames.
2) Deduce the coordinates of the points $A, B, C \& D$ in the new system.

Atastering problems		
Chapter	Exercises	Pages
CH-7: Vectors	$1,2 \& 4$	141
	6	142
		9
	$18 \& 16$	145

