Al- Mahdi High

Name:

Numerical Sequence

- W.S-6
- *I* The sum of three consecutive terms of an arithmetic progression is equal to 33, and the sum of squares of these terms is 365.
 - a. Translate the above text into a system of two equations.
 - b. Determine the numerical value for each term.

ed by:
$$\begin{cases} u_0 = -1 \\ u_{n+1} = \frac{9}{6 - u_n} & \text{for all } n \in N \end{cases}$$

II- Consider the sequence (u) defined by: $\begin{cases} u \\ u \end{cases}$

And the sequence
$$(V_n)_{n \in N}$$
 defined by: $v_n = \frac{1}{u_n - 3}$.

- a. Find the term, v_2 . Is (u) an arithmetic sequence? Justify.
- b. Show that (V_n) is an arithmetic sequence, whose common difference and first term are to be determined.
- c. Deduce the sense of variation of (V_n) .
- d. Find v_n in terms of *n* then deduce u_n in terms of *n*.
- e. Calculate, $S = v_1 + v_2 + ... + v_5$.

III- Consider the sequence (U) defined by: $\begin{cases} u_{n+1} \\ u_{n+1} \end{cases}$

$$: \begin{cases} u_{n+1} = \frac{1}{4}u_n - 3 & \text{for all } n \in N \end{cases}$$

And the sequence (V) defined by: $v_n = 2u_n + 8 \quad \forall n \in N$.

- 1. Compute the numerical values of the terms: $u_1, u_2 \& u_3$.
- 2. Determine the nature of the sequence, (U).
- 3. Show that the sequence (V) is a geometric sequence.
- 4. Find v_n in terms of *n* then deduce u_n in terms of *n*.
- 5. Determine in terms of *n* the sum: $s_n = v_0 + v_1 + v_2 + \dots + v_n$.
- 6. Deduce the value of the sum: $t_n = u_0 + u_1 + u_2 + \dots + u_n$.

IV- Consider the sequence $\{U_n\}$ defined for all natural numbers n by $U_{n+1} = 4U_n + 2$ and $U_0 = 1$

(u) = 2

<u>Part-A</u>: 1) Calculate U_1 and U_2 , then verify that $\{U_n\}$ is neither arithmetic nor geometric.

2) Let $W_n = -U_n + K$ find K so that the sequence $\{W_n\}$ is geometric.

<u>Part-B</u>: Let $\{V_n\}$ be a sequence defined for all natural numbers n by $V_n = -U_n - \frac{2}{3}$

- 1) Show that $\{V_n\}$ is a geometric sequence whose common ratio and first term are to be found.
- 2) Express V_n then U_n in terms of n.

3) If $S = V_0 + V_1 + \dots + V_n$, calculate S in terms of n and deduce $\sum_{n=0}^{n} (U_p + 2p - 3)$ in terms of n.

- V- Calculate the sum: $S = 1 + x + x^2 + x^3 + x^4 + \dots + x^{11}$.
- *VI* Consider the sequence (U_n) defined by: $\begin{cases} U_0 = 2\\ U_{n+1} = \frac{1}{2}U_n + 3 \end{cases}$
 - 1. Calculate $U_1 \& U_2$, then verify that (U_n) is neither arithmetic nor geometric.
 - 2. Let $V_n = U_n 6$
 - a. Show that (V_n) is a geometric sequence whose common ratio and first term are to be determined.
 - b. Calculate $V_n \& U_n$ in terms of n.
 - 3. Calculate the sum $S_n = V_0 + V_1 + \dots + V_n$ in terms of *n* & deduce $S'_n = U_0 + U_1 + \dots + U_n$.

VII- Let (U_n) be a sequence defined, for every natural number *n*, by: $\begin{cases} U_0 = 1 \\ U_{n+1} = U_n + \frac{1}{2^n}. \end{cases}$

- **1**) Calculate, $U_1 \& U_2$.
- 2) Show that the sequence (U_n) is neither arithmetic nor geometric.
- 3) Calculate $U_{n+1} U_n$. Deduce that the sequence (U_n) is strictly increasing.
- 4) Consider the sequence (V_n) defined by: V_n = U_{n+1} − U_n.
 a) Verify that (V_n) is a geometric sequence whose common ratio r and first term V₀ are to be determined.
 - **b**) Express V_n in terms of n, then deduce the value of V_{10} .
 - c) Calculate, in terms of *n*, the sum $S = V_0 + V_1 + V_2 + \dots + V_n$.
- *VIII-* In year 2010, the annual cost of the participation of a member in a sport club is 1 000 000 LL. This cost increases 10% annually. Starting from the second year, a participant will get an annual reduction of 50 000 LL. Designate by C_n the annual cost of a member in year (2009 + n). In this case, $C_1 = 1000 000$ LL
 - 1) Prove that $C_2 = 1\ 050\ 000\ LL$.
 - 2) Verify that $C_{n+1} = 1.1C_n 50\ 000$, where $n \ge 1$.
 - **3**) Consider the sequence (V_n) defined by: $V_n = C_n 500\ 000$.
 - **a**) Prove that (V_n) is a geometric sequence of common ratio 1.1.
 - **b**) Express V_n in terms of n, then deduce C_n in terms of n.
 - c) Find the annual cost of the participation of a member in year 2020.
 - 4) Let $S_n = C_1 + C_2 + ... + C_n$ and $R_n = V_1 + V_2 + ... + V_n$, where $n \ge 1$.
 - **a**) Write R_n in terms of n.
 - **b**) Deduce that $S_n = 5\ 000\ 000\ (1.1^n 1) + 500\ 000\ n$.