Al- Mandi High
Name:

Mathematics
\mathcal{N} umerical Sequence
$11^{\text {th }}$-Grade W.S-6

I- The sum of three consecutive terms of an arithmetic progression is equal to 33 , and the sum of squares of these terms is 365 .
a. Translate the above text into a system of two equations.
b. Determine the numerical value for each term.

II- Consider the sequence (u) defined by: $\left\{\begin{array}{l}u_{0}=-1 \\ u_{n+1}=\frac{9}{6-u_{n}}\end{array} \quad\right.$ for all $n \in N$
And the sequence $\left(V_{n}\right)_{n \in N}$ defined by: $v_{n}=\frac{1}{u_{n}-3}$.
a. Find the term, v_{2}. Is (u) an arithmetic sequence? Justify.
b. Show that $\left(V_{n}\right)$ is an arithmetic sequence, whose common difference and first term are to be determined.
c. Deduce the sense of variation of $\left(V_{n}\right)$.
d. Find v_{n} in terms of n then deduce u_{n} in terms of n.
e. Calculate, $S=v_{1}+v_{2}+\ldots+v_{5}$.

III- Consider the sequence (U) defined by: $\left\{\begin{array}{l}u_{0}=2 \\ u_{n+1}=\frac{1}{4} u_{n}-3 \text { for all } n \in N\end{array}\right.$
And the sequence (v) defined by: $v_{n}=2 u_{n}+8 \quad \forall n \in N$.

1. Compute the numerical values of the terms: $u_{1}, u_{2} \& u_{3}$.
2. Determine the nature of the sequence, (U).
3. Show that the sequence (v) is a geometric sequence.
4. Find v_{n} in terms of n then deduce u_{n} in terms of n.
5. Determine in terms of n the sum: $s_{n}=v_{0}+v_{1}+v_{2}+\ldots+v_{n}$.
6. Deduce the value of the sum: $t_{n}=u_{0}+u_{1}+u_{2}+\ldots+u_{n}$.

IV- Consider the sequence $\left\{U_{n}\right\}$ defined for all natural numbers n by $U_{n+1}=4 U_{n}+2$ and $U_{0}=1$
Part-A: 1) Calculate U_{1} and U_{2}, then verify that $\left\{U_{n}\right\}$ is neither arithmetic nor geometric.
2) Let $W_{n}=-U_{n}+K$ find K so that the sequence $\left\{W_{n}\right\}$ is geometric.

Part-B: Let $\left\{V_{n}\right\}$ be a sequence defined for all natural numbers n by $V_{n}=-U_{n}-\frac{2}{3}$

1) Show that $\left\{V_{n}\right\}$ is a geometric sequence whose common ratio and first term are to be found.
2) Express V_{n} then U_{n} in terms of n.
3) If $S=V_{0}+V_{1}+\ldots \ldots \ldots+V_{n}$, calculate S in terms of n and deduce $\sum_{p=0}^{n}\left(U_{p}+2 p-3\right)$ in terms of n.
V - Calculate the sum: $S=1+x+x^{2}+x^{3}+x^{4}+\ldots \ldots . .+x^{11}$.
VI- Consider the sequence $\left(U_{n}\right)$ defined by: $\left\{\begin{array}{l}U_{0}=2 \\ U_{n+1}=\frac{1}{2} U_{n}+3\end{array}\right.$
1. Calculate $U_{1} \& U_{2}$, then verify that $\left(U_{n}\right)$ is neither arithmetic nor geometric.
2. Let $V_{n}=U_{n}-6$
a. Show that $\left(V_{n}\right)$ is a geometric sequence whose common ratio and first term are to be determined.
b. Calculate $V_{n} \& U_{n}$ in terms of n.
3. Calculate the $\operatorname{sum} S_{n}=V_{0}+V_{1}+\ldots \ldots .+V_{n}$ in terms of $n \&$ deduce $S_{n}^{\prime}=U_{0}+U_{1}+\ldots \ldots .+U_{n}$.

VII- Let $\left(U_{n}\right)$ be a sequence defined, for every natural number n, by: $\left\{\begin{array}{l}\mathrm{U}_{0}=1 \\ \mathrm{U}_{\mathrm{n}+1}=\mathrm{U}_{\mathrm{n}}+\frac{1}{2^{n}}\end{array}\right.$.

1) Calculate, $U_{1} \& U_{2}$.
2) Show that the sequence $\left(U_{n}\right)$ is neither arithmetic nor geometric.
3) Calculate $U_{n+1}-U_{n}$. Deduce that the sequence $\left(U_{n}\right)$ is strictly increasing.
4) Consider the sequence $\left(V_{n}\right)$ defined by: $V_{n}=U_{n+1}-U_{n}$.
a) Verify that $\left(V_{n}\right)$ is a geometric sequence whose common ratio r and first term V_{0} are to be determined.
b) Express V_{n} in terms of n, then deduce the value of V_{10}.
c) Calculate, in terms of n, the sum $S=V_{0}+V_{1}+V_{2}+\ldots \ldots+V_{n}$.

VIII- In year 2010, the annual cost of the participation of a member in a sport club is 1000000 LL. This cost increases 10% annually. Starting from the second year, a participant will get an annual reduction of 50000 LL . Designate by C_{n} the annual cost of a member in year $(2009+n)$. In this case, $C_{1}=1000000$ LL

1) Prove that $C_{2}=1050000 \mathrm{LL}$.
2) Verify that $C_{n+1}=1.1 C_{n}-50000$, where $n \geq 1$.
3) Consider the sequence $\left(V_{n}\right)$ defined by: $V_{n}=C_{n}-500000$.
a) Prove that $\left(\mathrm{V}_{\mathrm{n}}\right)$ is a geometric sequence of common ratio 1.1.
b) Express V_{n} in terms of n, then deduce C_{n} in terms of n.
c) Find the annual cost of the participation of a member in year 2020.
4) Let $S_{n}=C_{1}+C_{2}+\ldots+C_{n}$ and $R_{n}=V_{1}+V_{2}+\ldots+V_{n}$, where $n \geq 1$.
a) Write R_{n} in terms of n.
b) Deduce that $\mathrm{S}_{\mathrm{n}}=5000000\left(1.1^{\mathrm{n}}-1\right)+500000 \mathrm{n}$.
