AlMakdi High Schools

Exercise 1: The following parts are independent.

1. Let $A=\sqrt{2}(\sqrt{2+\sqrt{3}})(1-\sqrt{3})$. Calculate A^{2} then deduce the value of A.
2. Find nature of triangle $A B C$ such as : $A B=\frac{\sqrt[5]{\sqrt{2^{11}}}}{\sqrt[5]{8}}, A C=\sqrt{18}-\sqrt{8}$ and $B C=\frac{\sqrt{2^{21}} \times \sqrt[3]{125}}{5\left(2^{3}+2^{3}+2^{3}+2^{3}\right)^{2}}$.
3. Simplify the expression: $\sqrt[4]{(\mathrm{a}-\mathrm{b})^{4}}+\sqrt{(\mathrm{a}-\mathrm{b})^{2}}+2 \sqrt[6]{(\mathrm{a}-\mathrm{b})^{6}}$ where $a<b<0$

Exercise 2: Given $A=(\sqrt[6]{\sqrt{5}-1})(\sqrt[6]{\sqrt{5}+1})(\sqrt[3]{4}) \& M=\frac{27^{n}-9^{2 n}}{3^{n}-9^{n}}$, where n is a real number

1) Show that A is equal to a natural number to be determined.
2) Show that $M=3^{\alpha n}$ where α is an integer to be determined.
3) Find the value of n for which $M=\left(\frac{1}{9}\right)^{2 n-1}$

Exercise 3: Given $A=\frac{2^{n}+2^{-n}}{2}$ and $B=\frac{2^{n}-2^{-n}}{2}$

1. Prove that $A^{2}-B^{2}=1$
2. Show that: $\sqrt{2+\sqrt{2}} \cdot \sqrt{2+\sqrt{2+\sqrt{2}}} \cdot \sqrt{2-\sqrt{2+\sqrt{2}}}=\sqrt{2}$

Exercise 4:

1- Calculate the product of: $(1+\sqrt{5})(1+\sqrt{2})$
2- Rationalize the denominator of: $\frac{4}{1+\sqrt{2}+\sqrt{5}+\sqrt{10}}$
3- Verify that: $\sqrt{\frac{\mathrm{x}+\sqrt{\mathrm{x}^{2}-2}}{2}}+\frac{\sqrt{\mathrm{x}-\sqrt{\mathrm{x}^{2}-2}}}{2}=\sqrt{\mathrm{x}+\sqrt{2}} \quad(x>2)$.
Exercise 5: Let $A=\frac{9^{n}+6.3^{n}+9}{9^{n}+3^{n+1}}$
a) Show that: $\mathrm{A}=3^{1-\mathrm{n}}+1$.
b) Find the value of n so that $A=28$.

Exercise 7: For each question in the table below, choose with justification the only correct answer.

\mathfrak{N} o.	Questions	Expected Answers		
		a	6	c
1.	$\sqrt{-\mathrm{x}-1}$ exists for	$\mathrm{x} \leq 1$	$x>0$	$\mathrm{x} \leq-1$
2.	The solution set, S, of $\frac{\|3 x-6\|}{(x-1)^{2}} \geq 0$, is	ϕ] $-\infty$; $1[\cup] 1 ;+\infty[$]1; $+\infty$ [
3.	If $\mathrm{E}=(5+\sqrt{5})(\sqrt{5}-\sqrt[4]{5})(\sqrt{5}+\sqrt[4]{5})$ then	$\mathrm{E}=0$	$\mathrm{E}=20$	$E=30+10 \sqrt{5}$
4.	$\sqrt[3]{\left((-5)^{2}\right)^{3}}=$	10	-25	25
5.	If $x \in \mathbb{R}^{-}$then, $\sqrt{x^{4}+4 x^{2}}=$	$\mathrm{x}^{2}+2 \mathrm{x}$	$x \sqrt{x^{2}+4}$	$-\mathrm{x} \sqrt{\mathrm{x}^{2}+4}$
6.	The solution set S of the equation: $\|x+3\|+1=2 x+1 \text { is }$	$S=\{3,-1\}$	$S=\{3\}$	$S=\left\{\frac{1}{3},-1\right\}$
7.	If $\mathrm{x} \in[-1 ; 5]$ then	$\|x-2\| \leq 3$	$\|x+2\| \leq 3$	$\|x+2\|<3$
8.	If $a>0 \& b<0$, then $\frac{\sqrt{a^{2} b^{2}}+2\|a b\|}{\sqrt[3]{a^{3} b^{3}}}=$	-3	3	0
9.	If $\mathrm{E}=\sqrt[6]{(3-\pi)^{6}}-\sqrt[5]{(\pi-4)^{5}}-\sqrt{(4-\pi)^{2}}$ Then $\mathrm{E}=$	$\pi-3$	- $(\pi+3)$	$3-\pi$
10.	If $x=\sqrt{2} \times \sqrt{2-\sqrt{3}}(1+\sqrt{3})$, then $x=$	-2	2	$\sqrt{3}-1$

Exercise 9: The parts of this question are independent.

1. Let $A=\frac{2^{4 n}+6.2^{3 n}+9.2^{2 n}}{2^{3 n}+3.2^{2 n}} ; \quad(n \in Z)$
a) Show that: $A=2^{n}+3$.
b) Find n so that: $A=\frac{97}{32}$.
c) Determine the value of m so that: $\frac{4^{m^{2}}}{8^{m}}=2^{m}$
2. Given $a=\sqrt{3+2 \sqrt{2}}(2 \sqrt{2}-3)(\sqrt{10}+\sqrt{5})$.

Calculate a^{2}, then deduce the value of a.

Exercise 10: Express without radical sign:
a) $\sqrt[6]{(x-1)^{6}}$
b) $\left(\sqrt[4]{9 x^{2}}\right)^{2}$
c) $\sqrt[4]{625 a^{8}}$
d) $\left(\sqrt[8]{x^{2}}\right)^{4}$
e) $\sqrt[5]{-243 b^{5}}$
f) $\left(\sqrt[3]{2 a^{2}}\right)^{3}$
g) $\left(\sqrt{a^{3}}\right)^{2}$ s.t $a>0$.
h) $\left(\sqrt[4]{y^{2}}\right)^{6}$.

Exercise 11: Simplify:

1) $\sqrt[10]{x^{4}} \cdot \sqrt[10]{x^{3}} \cdot \sqrt[10]{x^{3}}$
2) $\frac{\sqrt[4]{32}}{\sqrt[4]{2}}$
3) $\sqrt[4]{\frac{81}{16}}$
4) $\frac{\sqrt[3]{16 a^{5} b^{3}}}{\sqrt[3]{2 a^{2}}}$
5) $4 \sqrt[4]{5 a^{2}} \cdot 8 \sqrt[4]{125 a} \cdot 2 \sqrt[4]{a}$. Where $a \geq 0$
6) $\frac{12 \sqrt[8]{3 x^{10}}}{\sqrt[8]{3 x^{2}}}$.

Exercise 12: Solve the following equations then check:
a- $\left(4^{3 x+1}-\frac{1}{2}\right)\left(25^{x-1}-\sqrt[5]{5}\right)=0$
c- $\sqrt[3]{2 x-1}=-3$
e- $\sqrt{x+2}-\sqrt{x-1}=1$
b- $\sqrt[4]{32-x^{4}}=x$
d- $\sqrt{5-\sqrt{3 x-2}}=1$
f- $\sqrt[4]{5 x-5}+11=6$

Exercise 13: Simplify or (Express in form of a single radical)
$\sqrt[4]{2} . \sqrt{3} \quad ;$
$\sqrt[3]{a^{2}} \cdot \sqrt[4]{a^{3}} \cdot \sqrt[5]{a}$
$; \frac{\sqrt[3]{5}}{\sqrt[4]{5}}$
$\sqrt[7]{b^{3}} \cdot \sqrt[3]{b^{2}} \cdot \sqrt{b} ;$

$$
\frac{\sqrt[4]{27}}{\sqrt{3}}
$$

$$
; \frac{\sqrt[5]{x^{4}}}{\sqrt[3]{x}}
$$

Exercise 14: Rationalize the denominator of:
1- $\frac{\sqrt[3]{54 x^{3} y}}{\sqrt[3]{3 x}}$
$3-\sqrt[3]{\frac{5}{2 a^{2}}}$
5- $\frac{2}{\sqrt[3]{2}-\sqrt[3]{5}}$
2- $\frac{2}{\sqrt{x^{5}}}$
4- $\frac{2}{1+\sqrt[3]{a}}$
6- $\frac{1}{\sqrt[4]{3}-\sqrt[4]{2}}$.

Exercise 15: Compute the following products:

№.	Product form	Expanded form	The conjugate of
1)	$(a \sqrt{b}+c \sqrt{d})(a \sqrt{b}-c \sqrt{d})$		$(2 \sqrt{3}-5 \sqrt{2})$ is
2)	$\left(\sqrt[n]{x^{k}}\right)\left(\sqrt[n]{x^{n-k}}\right)$		$\sqrt[5]{x^{2}}$ is
3)	$(\sqrt[3]{a}-\sqrt[3]{b})\left(\sqrt[3]{a^{2}}+\sqrt[3]{a b}+\sqrt[3]{b^{2}}\right)$		$\sqrt[3]{5}-\sqrt[3]{7}$ is
4$)$	$(\sqrt[3]{a}+\sqrt[3]{b})\left(\sqrt[3]{a^{2}}-\sqrt[3]{a b}+\sqrt[3]{b^{2}}\right)$		
5)	$(\sqrt[4]{a}-\sqrt[4]{b})\left(\sqrt[4]{a^{3}}+\sqrt[4]{a^{2} b}+\sqrt[4]{a b^{2}}+\sqrt[4]{b^{3}}\right)$		
6$)$	$(\sqrt[4]{a}+\sqrt[4]{b})\left(\sqrt[4]{a^{3}}-\sqrt[4]{a^{2} b}+\sqrt[4]{a b^{2}}-\sqrt[4]{b^{3}}\right)$		

I- To reduce several radicals, with positive radicands, to the same index:
a) Find the LCM of the given indices.
b) Go as you do while taking a common denominator.

II- Two radicals are identical if, in simplest form, they have the same index and same radicand.
III- Addition and subtraction of radicals can be performed only if radicals are identical.
IV- Two radicals are conjugate of each other if their product contains no radicals when expressed in simplest form.

