AlMahdi High Schools	Mathematics	10 th -Grade				
Name:	"Powers And Radicals"	W.S-6.				
Exercise 1: The following parts are independent.						
1. Let $A = \sqrt{2} \left(\sqrt{2 + \sqrt{3}} \right) \left(1 - \sqrt{3} \right)$). Calculate A^2 then deduce the value	of A.				
2. Find nature of triangle <i>ABC</i> su	uch as : $AB = \frac{\sqrt[5]{\sqrt{2^{11}}}}{\sqrt[5]{8}}$, $AC = \sqrt{18} - \sqrt{8}$ ar	nd $BC = \frac{\sqrt{2^{21}} \times \sqrt[3]{125}}{5(2^3 + 2^3 + 2^3 + 2^3)^2}.$				
3. Simplify the expression: $\sqrt[4]{(a - a)}$	$\overline{b}^{4} + \sqrt{(a-b)^{2}} + 2\sqrt[6]{(a-b)^{6}}$ where $a < b < b < b < b < b < b < b < b < b < $	< 0				
<u>Exercise 2</u> : Given $A = \left(\sqrt[6]{\sqrt{5}-1}\right)^{\frac{6}{5}}$	$\sqrt[5]{\sqrt{5}+1}(\sqrt[3]{4})\&M = \frac{27^n - 9^{2n}}{3^n - 9^n}$, where	<i>n</i> is a real number				
1) Show that <i>A</i> is equal to 2) Show that $M = 3^{\alpha n}$ where	a natural number to be determined. e α is an integer to be determined.					
3) Find the value of n for v	which $M = \left(\frac{1}{9}\right)^{2n-1}$.	S				
<u>Exercise 3</u> : Given $A = \frac{2^n + 2^{-n}}{2}$ and	nd $B = \frac{2^n - 2^{-n}}{2}$					
1. Prove that $A^2 - B^2 = 1$						
2. Show that: $\sqrt{2 + \sqrt{2}} \cdot \sqrt{2} + \sqrt{2} \cdot \sqrt{2}$	$\sqrt{2+\sqrt{2}} \cdot \sqrt{2-\sqrt{2+\sqrt{2}}} = \sqrt{2}$					
<u>Exercise 4</u> :						
1- Calculate the product of:	$\left(1+\sqrt{5}\right)\left(1+\sqrt{2}\right)$					
2- Rationalize the denomination of the denomin	ator of: $\frac{4}{1+\sqrt{2}+\sqrt{5}+\sqrt{10}}$					
3- Verify that: $\sqrt{\frac{x+\sqrt{x^2-2}}{2}}$	$+\frac{\sqrt{x-\sqrt{x^2-2}}}{2} = \sqrt{x+\sqrt{2}} (x>2).$					
<u>Exercise 5</u> : Let $A = \frac{9^n + 6.3^n + 9}{9^n + 3^{n+1}}$						
a) Show that: $A = 3^{1-n} + 1$.						
b) Find the value of <i>n</i> so that	at $A = 28$.					

Ma	Questions	Expected Answers		
JN O.		а	б	С
1.	$\sqrt{-x-1}$ exists for	$x \leq 1$	x > 0	x ≤ -1
2.	The solution set, <i>S</i> , of $\frac{ 3x-6 }{(x-1)^2} \ge 0$, is	ϕ]−∞;1[∪]1;+∞[]l;+∞[
3.	If $E = (5 + \sqrt{5})(\sqrt{5} - \sqrt[4]{5})(\sqrt{5} + \sqrt[4]{5})$ then	$\mathbf{E} = 0$	E = 20	$E = 30 + 10\sqrt{5}$
4.	$\sqrt[3]{((-5)^2)^3} =$	10	-25	25
5.	If $x \in \mathbb{R}^-$ then, $\sqrt{x^4 + 4x^2} =$	$x^2 + 2x$	$x\sqrt{x^2+4}$	$-x\sqrt{x^2+4}$
6.	The solution set S of the equation: x+3 +1=2x+1 is	$S = \{3, -1\}$	$S = \{3\}$	$S = \{\frac{1}{3}, -1\}$
7.	If $x \in [-1; 5]$ then	$ x-2 \le 3$	$ x+2 \le 3$	$ x+2 \langle 3$
8.	If $a > 0 \& b < 0$, then $\frac{\sqrt{a^2 b^2} + 2 ab }{\sqrt[3]{a^3 b^3}} =$	-3	3	0
9.	If $E = \sqrt[6]{(3-\pi)^6} - \sqrt[5]{(\pi-4)^5} - \sqrt{(4-\pi)^2}$ Then $E =$	π – 3	$-(\pi + 3)$	$3-\pi$
10.	If $x = \sqrt{2} \times \sqrt{2 - \sqrt{3}} (1 + \sqrt{3})$, then $x =$	-2	2	$\sqrt{3} - 1$

Exercise 7: For each question in the table below, choose with justification the only correct answer.

<u>Exercise 9</u>: The parts of this question are independent.

- 1. Let $A = \frac{2^{4n} + 6 \cdot 2^{3n} + 9 \cdot 2^{2n}}{2^{3n} + 3 \cdot 2^{2n}}$; $(n \in \mathbb{Z})$ a) Show that $: A = 2^n + 3$.
 - b) Find *n* so that: $A = \frac{97}{32}$.
 - c) Determine the value of *m* so that: $\frac{4^{m^2}}{8^m} = 2^m$
- 2. Given $a = \sqrt{3+2\sqrt{2}} (2\sqrt{2}-3)(\sqrt{10}+\sqrt{5})$. Calculate a^2 , then deduce the value of a.

<u>Exercise 10</u>: Express without radical sign:

a)
$$\sqrt[6]{(x-1)^6}$$
 c) $\sqrt[4]{625a^8}$ e) $\sqrt[5]{-243b^5}$ g) $(\sqrt{a^3})^2 s.t \ a > 0.$
b) $(\sqrt[4]{9x^2})^2$ d) $(\sqrt[8]{x^2})^4$ f) $(\sqrt[3]{2a^2})^3$ h) $(\sqrt[4]{y^2})^6.$

Exercise 11: Simplify:

1)
$$\sqrt[10]{x^4} \sqrt[10]{x^3} \sqrt[10]{x^3}}$$
 3) $\sqrt[4]{\frac{81}{16}}$ 5) $4\sqrt[4]{5a^2} \sqrt[84]{125a} \sqrt[24]{a}$. Where $a \ge 0$
2) $\frac{\sqrt[4]{32}}{\sqrt[4]{2}}$ 4) $\frac{\sqrt[3]{16a^5b^3}}{\sqrt[3]{2a^2}}$ 6) $\frac{12\sqrt[8]{3x^{10}}}{\sqrt[8]{3x^2}}$.

<u>Exercise 12</u>: Solve the following equations then check:

a-
$$\left(4^{3x+1} - \frac{1}{2}\right)\left(25^{x-1} - \sqrt[5]{5}\right) = 0$$
 c- $\sqrt[3]{2x-1} = -3$ e- $\sqrt{x+2} - \sqrt{x-1} = 1$
b- $\sqrt[4]{32-x^4} = x$ d- $\sqrt{5-\sqrt{3x-2}} = 1$ f- $\sqrt[4]{5x-5} + 11 = 6$

<u>Exercise 13</u>: Simplify or (Express in form of a single radical)

$$\sqrt[4]{2}.\sqrt{3} ; \qquad \sqrt[3]{a^2}.\sqrt[4]{a^3}.\sqrt[5]{a} ; \frac{\sqrt[3]{5}}{\sqrt[4]{5}}.$$

$$\sqrt[7]{b^3}.\sqrt[3]{b^2}.\sqrt{b}; \qquad \frac{\sqrt[4]{27}}{\sqrt{3}} ; \frac{\sqrt[4]{27}}{\sqrt{3}}.$$

<u>Exercise 14</u>: Rationalize the denominator of:

$$1-\frac{\sqrt[3]{54x^{3}y}}{\sqrt[3]{3x}} \qquad 3-\sqrt[3]{\frac{5}{2a^{2}}} \qquad 5-\frac{2}{\sqrt[3]{2}-\sqrt[3]{5}} \\ 2-\frac{2}{\sqrt{x^{5}}} \qquad 4-\frac{2}{1+\sqrt[3]{a}} \qquad 6-\frac{1}{\sqrt[4]{3}-\sqrt[4]{2}} .$$

<u>Exercise 15</u>: Compute the following products:

No.	Product form	Expanded form	The conjugate of
1)	$\left(a\sqrt{b}+c\sqrt{d}\right)\left(a\sqrt{b}-c\sqrt{d}\right)$		$\left(2\sqrt{3}-5\sqrt{2}\right)$ is
2)	$\left(\sqrt[n]{x^k}\right)\left(\sqrt[n]{x^{n-k}}\right)$		$\sqrt[5]{x^2}$ is
3)	$\left(\sqrt[3]{a} - \sqrt[3]{b}\right)\left(\sqrt[3]{a^2} + \sqrt[3]{ab} + \sqrt[3]{b^2}\right)$		$\sqrt[3]{5} - \sqrt[3]{7}$ is
4)	$\left(\sqrt[3]{a} + \sqrt[3]{b}\right)\left(\sqrt[3]{a^2} - \sqrt[3]{ab} + \sqrt[3]{b^2}\right)$		XV
5)	$\left(\sqrt[4]{a} - \sqrt[4]{b}\right)\left(\sqrt[4]{a^3} + \sqrt[4]{a^2b} + \sqrt[4]{ab^2} + \sqrt[4]{b^3}\right)$		
6)	$\left(\sqrt[4]{a} + \sqrt[4]{b}\right)\left(\sqrt[4]{a^3} - \sqrt[4]{a^2b} + \sqrt[4]{ab^2} - \sqrt[4]{b^3}\right)$		

- *I* To reduce several radicals, with *positive* radicands, to the same index:
 - a) Find the LCM of the given indices.
 - b) Go as you do while taking a common denominator.
- *II-* Two radicals are *identical* if, in simplest form, they have the *same index* and *same radicand*.
- III- Addition and subtraction of radicals can be performed only if radicals are identical.
- *IV* Two radicals are conjugate of each other if their product contains no radicals when expressed in simplest form.