Lycée Des Arts	Mathematics	9th_Grade
Name:.........	"Thales'Property"	W.S-6

1) Find the numerical value of the strictly positive real number x in each of the following cases:

Fig-1.

Fig-2.
2) In triangle $A B C$, we have $(A E) / /(D F)$.

Prove that $(A C) / /(D E)$.

3) Let $R N K$ be any triangle. The parallel drawn to ($N K$) intersects sides $[R N] \&[R K]$ at E and F respectively. The parallel to (NF) drawn through E cuts $[R K]$ at G. Prove that: $R F^{2}=R G \times R K$.
4) Consider the two triangles $A B C \& A C D$, where $(E G) / /(B C) \&(G H) / /(A D)$.
Compute the length of $[\mathrm{CH}]$.

5) Given a semi-circle (c) of center O and diameter $B C=6 \mathrm{~cm}$, and A is a point on (c), such that $A B=3 \mathrm{~cm}$. Let I be a point on $[B C]$ such that $B I=\frac{2}{3} B C$, and J is a point on $[A B]$ such that $B J=2 \mathrm{~cm}$. Draw a sketch
a. Prove that $(I J)$ is parallel to $(A C)$. Deduce relative position of $(I J)$ and $(A B)$.
b. If N is the midpoint of $[B I]$. Prove that $\frac{J N}{B I}=\frac{A O}{B C}=\frac{1}{2}$, and that $(J N) \|(A O)$.
6) Let RIDA be a parallelogram and M be a point on $[I A] \cdot[R M)$ cuts $[I D)$ at O and $[D A]$ at N. Prove that: $R M^{2}=M N \times M O$.
7) Consider the right angle $u \hat{O} v$. Let $R \& N$ be two points on $[O u) \&[O v)$ respectively such that $O R=3 \mathrm{~cm}$ and $O N=4 \mathrm{~cm}$.
a. Compute $R N$.
b. Let K be a point on $[R N]$ such that $R K=3 \mathrm{~cm}$. The circle of diameter [$N K$]intersects [ON] at F. Calculate NF and FK.
8) Let $M, N \& Q$ be three collinear points taken in this order, such that $M N=6 \mathrm{~cm}$ and $N Q=4 \mathrm{~cm} .(C)$ is the circle of diameter $[M N]$ and $\left(C^{\prime}\right)$ the circle of diameter [$N Q$]. A is a point on (C), so that $M A=2 \mathrm{~cm}$. (AN)intersects $\left(C^{\prime}\right)$ at B.
a. Calculate measure of $A N$.
b. Show that $(M A)$ and $(Q B)$ are parallel.
c. Calculate the lengths of $Q B \& B N$.
9) In each of the following figures, $A B C D$ is a parallelogram. Calculate $x \& y$.

10) Consider a circle (C) of center O and diameter $A B=12 \mathrm{~cm} . E$ is a point of $[O B]$ such that $O E=4 \mathrm{~cm}$. Draw the circle $C^{\prime}(E ; B E) .\left(C^{\prime}\right)$ intersects $[O B]$ again at point N.
a. Draw a figure.
b. Let M be a point of $\left(C^{\prime}\right)$ such that $B M=2 c m$ and the line $(B M)$ cuts (C) at P,where $(P O)$ cuts (C) at K.
i. What is the nature of triangle $M N B$? Deduce the length of $M N$.
ii. Prove that $(M N)$ and $(A P)$ are parallel.
iii. Deduce the length of $B P$.
c. Prove that $(M E) / /(P O)$.
d. i) Calculate the ratio $\frac{B N}{B O}$, and deduce the position of the point N in the triangle $P B K$.
ii) $(P N)$ cuts $(B K)$ in I. Prove that I is the midpoint of $[B K]$.
iii) $(K N)$ cuts $(P B)$ in J. Prove that $I J=6 \mathrm{~cm}$.
11) $A B C$ is an isosceles triangle at vertex A. The altitude issued from point A cuts $[B C]$ at H. (See figure below)
Given $B C=6 \mathrm{~cm}$ and $A H=4 \mathrm{~cm}$.
Let M be a point of $[\mathrm{BH}]$ such that $B M=x$. The parallel to $(A H)$ through M cuts $(A B)$ at P and $(A C)$ at Q.

1) a- Calculate BH and give an encirclement for x.
b- Show that: $\frac{M P}{A H}=\frac{x}{3}$. Deduce $M P$ in terms of x.
2) a- Express $M C$ in terms of x.
b- Show that $M Q=\frac{4}{3}(6-x)$.
c- Find the value of x so that $M Q=3 M P$.
d - In this case, precise the position of P on $[A B]$.

3) In the adjacent figure $[A I)$ is the bisector of the angle $B \hat{A} C$, where $I C=5 \mathrm{~cm}$, $A C=6 \mathrm{~cm} \& B C=8 \mathrm{~cm}$.
a) Reproduce the figure.
b) Explain how can you use the segment $[B C]$ and the point I to locate the point D on $[B A)$ so that, $B D=\frac{8}{3} B A$.
c) What is the relative position of $(A I) \&(D C)$? Justify.
d) From this part on we admit that $A I=b, D C=a$ and that the straight lines $(A I) \&(D C)$ are parallel.
i. Code the figure.

ii. Show that the triangle $A C D$ is isosceles.
iii. Prove that: $\frac{A B}{A C}=\frac{I B}{I C}$.
iv. Show that: $b=\frac{3}{8} a$
v. If the perimeter of the trapezoid $A I C D=19.25 \mathrm{~cm}$, then deduce that $a=6 \mathrm{~cm}$ and $b=2.25 \mathrm{~cm}$.
4) The unit of length in this exercise is the centimeter, where the parts \boldsymbol{A} and \boldsymbol{B} are independent.
Let I be any point on the diagonal [$A C$] of the parallelogram $A B C D$ of sides $A B=x+5$ and $A D=4 x+2 .[D I)$ cuts $[A B]$ and $(B C)$ in points $N \& O$ respectively. Complete the figure. Part-A:
5) If $B N=2 \mathrm{~cm}$, then:
a. Prove that $\frac{I D}{I N}=\frac{x+5}{x+3}$.
b. Calculate the numerical value of x, if $\frac{I C}{I A}=\frac{3}{2}$
6) Prove that $D I^{2}=I N \times I O$.

Part-B:

The parallels drawn from I to the straight lines, $(B C)$ and $(D C)$, cut $[A B] \&[A D]$ in the points $E \& F$ respectively. Complete the figure.

1) If $F I=2 \mathrm{~cm} \& I E=x \mathrm{~cm}$, then find the ratio of $A I$ to $A C$ in terms of x.
2) Prove that: $\frac{F I}{D C}=\frac{I E}{C B}$
3) Show that: $x^{2}-3 x-4=(x+1)(x-4)$
4) Use parts $2 \& 3$ to calculate the value of x.
5) Prove that $(F E)$ and $(D C)$ are parallel.
