A - Given the numbers: $S=(2-3 \sqrt{2})^{2}-(3-\sqrt{2})^{2} \quad$ and $W=(5+\sqrt{2})(4-2 \sqrt{2}) \cdot(5-p t s)$

1. Simplify the numbers $S \& W$.
2. Verify that $S-W$, is an integer.
3. Now, consider the right trapezoid $R N F K$.
i. What does the segment $T S$ represent?
ii. Compute the value of a.

iii. Work out the area of trapezoid $R N F K$, and write your answer in the form $x+y \sqrt{2}$.
B - Consider the triangle $A B C$.
4. For what values of x is $[B C]$ valid?
5. Is [$E D$] defined for every natural integer? Justify.
6. Calculate the numerical value of x for which $E \& D$ are the respective midpoints of $[A C] \&[A B]$.
7. Form this part on, let $x=\frac{1}{2}$ and F be the orthogonal projection of A on $[B C],(A F)$ cuts $(E D)$ at K.
i. What is the relative position of $(A F)$ with respect to $[A F]$?
ii. What is the nature of triangle $A E K$?
iii. Find area of trapezoid $B C E D$ in two different ways, take $A F=8 \mathrm{~cm}$.
\boldsymbol{C} - Consider a circle (C) of center O, and radius 5 cm , and diameter $[A B]$. Let ($x y$) be the tangent at A to (C), and M is a variable point on (C). $(M P)$ is the perpendicular to $[A B]$ and $(M Q)$ is the perpendicular to ($x y$)
a. Draw figure an then show that $A M=P Q$.
b. I is the midpoint of $[A M]$.
i. Show that $O I A$ is a right triangle at I.
$i i$. Find the locus of I, when M moves on (C).
c. Show that $[M A)$ is the bisector of angle $Q M O$.
d. $[\mathrm{MO}] \&[\mathrm{BI}]$ intersect at G.
i. What is the relative position of G with respect to the triangle $A M B$
$i i$. Find the locus of G, as M describes (C).

flastering problems		
Chapter	Exercises	Pages
CH-: midpoint theorem	$1,3,5 \& 8$	169

