I- Consider the tetrahedron $A B C D$ in which $(A C)$ is perpendicular to $(B C D)$ where the triangle $B C D$ is right at $B .($ Mastering, P:113, Ex:9)

1. Prove that $(B D)$ is perpendicular to $(A B C)$. What can you say about triangle $A B D$?
2. In triangle $A B C$, let $[C E]$ be the height relative to $[A B]$, and $[C F]$ be the height relative
to $[A D]$ in triangle $A C D$. Prove that:
a. $(C E)$ and $(A B D)$ are perpendicular.
b. $(A F)$ is perpendicular to $(C E F)$.
3. Let $I, M \& J$ be the respective midpoints of the edges $[A D],[D C] \&[C B]$ and suppose that $A C=B D$.
a. What is the nature of the triangle IJM ? Justify.
b. Deduce the measure of the angle between the lines $(A C) \&(I J)$.
c. Calculate the measure of $A C$ in terms of a, such that $I J=\frac{a \sqrt{2}}{2}$.

II- Consider the plane (p) formed by the square $A B C D$ of side $a \mathrm{~cm}$, and let S be any point on the straight line (Δ), the perpendicular to (p) at A, so that $S A=a \mathrm{~cm}$.
1- Reproduce the figure and complete when necessary.
2- What does the formed solid represent?
3- a) Prove that the triangle $S B C$ is right and not isosceles.
b) Deduce that the planes $(S A B)$ and $(S B C)$ are perpendicular.

4- Let O be the center of $A B C D$.
a. Calculate the exact values of $S D \& S C$.
b. Deduce the nature of the triangle $S B D$.
c. Determine the tangent of the angle formed by the planes (SBD) and (ABC).
5- Let I be the midpoint of [SC] and N be any point of the plane (BID).

Prove that N is equidistant from the points $A \& C$.
6- a) Let J be a point of the space such that $(J C)$ is orthogonal to $(B I)$ and $(D I)$. Prove that the points $A, C \& J$ are collinear.
b) Calculate $\cos \alpha$, where α is the angle formed by $(S C) \&(A B D)$

