1) Answer by True or False, and correct false statements:
a. All straight lines have a definite director coefficient.
b. There is only one vector parallel to $\vec{V}(2,1)$.
c. To find distance between a point and a line, is to determine the distance between this point and any point on that line.
d. The slant of a straight line is the ratio of horizontal change to the vertical change.
2) Write each of the following equations in slope intercept form (reduced form):
a. $\left(d_{1}\right): 3 x-2(y-1)=3(2 y-x)+7$.
b. $\left(d_{2}\right): \frac{3(y+3)}{7-y}=\frac{1-3 x}{2+x}$
3) Choose with the appropriate justification the correct answer.

\mathcal{N} o.	Statements	Proposed answers			
		\mathcal{A}	\mathfrak{B}	C	
1.	The lines $x=1 \& x=-1$. are	Parallel	Perpendicular	Parallel to x^{\prime} 'ox.	
2.	The lines $x=1 \& y=-3$ are	Parallel	Perpendicular	Parallel to x^{\prime} 'ox.	
3.	$y=-3 x$	Has a slope -1	Passes through origin	$\begin{gathered} \text { Intercepts } \\ y-\text { axis at }-3 . \end{gathered}$	
4.	The line $y=-3$ passes through	$(0 ;-3)$	(-3;0)	(0;0)	
5.	If $\left\{\begin{array}{c}A(1 ;-3) \text { satisfy }(d) \\ \text { and }(d) \\| x^{\prime} O x\end{array}\right\}$, then equation of (d) is:	$(d): x=1$.	$(d): y=-3$.	$(d): y=x-3$.	
6.	The lines $y=-3$ and $x=2$ intersect at the point	$(-3 ; 2)$	$(-2 ; 3)$	(2;-3)	
7.	Equation of a straight line	$y=2 x$.	$y=(x-1)^{2}$.	$y=-\frac{3}{x}$.	
8.	The line $y=-1$ intercept the y-axis at:	1	-1	Does not have	

4) Trace the following straight lines in an orthonormal system of axes ($x^{\prime} O x \& y^{\prime} O y$):
$\left(d_{1}\right): 4 x-2 y+6=0$.
$\left(d_{2}\right): 2 x-4=0$.
$\left(d_{3}\right): y+1=0$.
5) Consider the points $A(2 ;-1) \& B(4 ; 1)$ and the straight line $(L): y=2 x-4$.
a. Plot the points and draw the straight line in the plane (x^{\prime} Oxand $y^{\prime} O y$).
b. Assemble the equation of the straight line $(A B)$.
c. Find the coordinates of M, the intersection point of the straight lines $(L) \&(A B)$.
d. Line (L) intersects the axes $\left(x^{\prime} x\right)$ and $\left(y^{\prime} y\right)$ at E and F respectively. Calculate $[E F]$.
\boldsymbol{e}. Find equation of straight line (P) the perpendicular bisector of $[E F]$.
f. Determine the coordinates of J the centroid of triangle $O E F$.
6) Consider in an orthonormal system $x^{\prime} O x, y^{\prime} O y$ the equations:

$$
\left(D_{1}\right): y=2 x+3 \quad \text { and } \quad\left(D_{2}\right): y=(m-3) x-1 .
$$

a. Find the numerical value of m, such that $\left(D_{1}\right)$ is perpendicular to $\left(D_{2}\right)$.
b. Trace the given lines.
c. Find the coordinates of point M, the point of intersection of $\left(D_{1}\right) \operatorname{and}\left(D_{2}\right)$.
d. Verify that the point $N(-3 ;-3)$ belongs to the line of y-intercept $(0 ; 3)$.
e. Determine the coordinates of point $R(2 n ; n+1)$ that verifies the equation of line $\left(D_{2}\right)$.
7) Consider the following cartesian systems:

8) Consider the lines: $\left(\Delta_{1}\right): 2 y=m x+2 n .\left(\Delta_{2}\right): y=-x-2$ and the point $N(0 ; 1)$.
\boldsymbol{a}. Determine the values of $m \& n$ so that $\left(\Delta_{1}\right) \&\left(\Delta_{2}\right)$ are perpendicular \& N belongs to $\left(\Delta_{1}\right)$.
b. If $P(a ; a-1)$ is any point. Find a so that triangle $N O P$ is isosceles with vertex O.
9) Given in the plane (x^{\prime} Oxand $y^{\prime} O y$)the points $R(0 ;-3), N(5 ; 2) K(2 ;-1)$ and the straight line, (d): $y=-2 x+3$.
a. Locate the points R and N and trace line (d) on the same orthonormal system of axes.
b. Find the equation of line $(R N)$ and verify that it intersects (d) at K.
c. Let $F(f ; 0)$ be a point in same plane of (d).
i. Calculate the length of $R F$ and $N F$ interms of f.
$i i$. Find the value of f such that triangle $R N F$ is right at R.
iii. Calculate f where triangle $R N F$ is isosceles of vertex F.
10) Consider the points: $R(0 ;-1), P(4 ;-1)$ and $N(2 ; 5)$.
i. Prove that triangle $R P N$ is isosceles of vertex N.
ii. Deduce the coordinates of H, the orthogonal projection of N on ($R P$).
iii. Determine coordinates of J the circumcenter of triangle $R H N$.
11) In a reference frame given the points $A(1 ; 1), B(2 ; 2)$ and $M(x ; y)$.

Determine a relation between x and y such that triangle $A B M$ is isosceles of vertex M.
12) Consider in cartesian system $x^{\prime} O x, y^{\prime} O y$ the equations:
$(D): y=2 m x+1 \quad \&$
($\left.D^{\prime}\right): y=(4 m-2) x-4$.

1 - What is the value of m, so that (D) is parallel to (D^{\prime})?
2- Construct $(D) \&\left(D^{\prime}\right)$ in the given system.
3- Find the value of a, if the point $N(3 ; a)$ belong to $\left(D^{\prime}\right)$.
4- Determine the coordinates of point B the symmetric of N with respect to $M(2 ; 0)$.
13) Consider in the coordinate system $x^{\prime} O x, y^{\prime} O y$ the points:

$$
A(-1 ; 0), B(1 ;-4) \text { and } C(-9 ;-4) .
$$

a. Plot the given points.
b. Determine the nature of the triangle formed by the three given points.
c. Compute the area of triangle $A B C$.
d. Determine the coordinates of point I the center of gravity of the formed triangle.
\boldsymbol{e}. Find the center and the radius of the circle circumscribed about triangle ABC.
f. Find the coordinates of point D the fourth vertex of the parm $A B C D$.
14) Consider the line $(d): m x+(m-2) y+m-4=0$, where m is a real number and the points $A(-1 ; 2), B(3 ;-1) \& M(1 ;-2)$.
\boldsymbol{a}. Determine the value of m in each of the following cases:
i. (d) passes through the origin.
ii. (d) parallel to abscissa axis.
iii. (d) parallel to ordinate axis.
$i v$. (d) passes through the point A.
v. (d) parallel to the line $\left(d^{\prime}\right): y=-2 x+4$.
b. Verify that the points $A, O \& M$ are collinear.
c. Find the coordinates of the point D the fourth vertex of parallelogram $A B M D$.
15) Let $R(1 ; 3)$ be the symmetric of $N(3 ; 1)$ with respect of a line (Δ) of the form: $y=a x+b$.
a. Determine the equation of (Δ).
b. What is the nature of triangle $O R N$? Justify.
c. Find coordinates of point D such that $\overrightarrow{R N}=2 \overrightarrow{N D}-\overrightarrow{R D}$
16) Consider the plane of orthonormal system of axes $\left(x^{\prime} O x, y^{\prime} O y\right)$ the points $A(3 ; 0) B(-1 ; 8)$, and the line $(\Delta): 2 y-x=7$.
a. Trace the line and place the given points.
b. Construct the equation of the straight line $(A B)$.
c. Find coordinates of I the point of intersection of lines $(A B)$ and (Δ).
d. Show that I is the midpoint of $[A B]$. Deduce the relative positions of $[A B] \operatorname{and}(\Delta)$.
17) In a reference frame consider the points $A(2 x+1 ; 3), B(2 y-2 ; 5), C(x+y ; 2 x)$ and $D(5 x-3 y ; 6-2 y)$.
a. Find the numerical values of $x \& y$ so that quadrilateral $A B C D$ is a parallelogram.
b. Deduce coordinates of the vertices of parallelogram $A B C D$.
18) In an orthonormal reference of axes $\left(x^{\prime} O x, y^{\prime} O y\right)$ consider the points:

$$
A(5 ;-3), B(11 ; 0), C(2 ; 3) \text { and the line }(d): y=-2 x+7 .
$$

a. Plot points A, B, C and draw (d).
b. Determine the slope of line $(A B)$. Write its equation.
c. Show that (d) is perpendicular to line $(A B)$ and passes through the points A and C.
d. Calculate the measure of the sides $A B \& A C$. Deduce the nature of triangle $A B C$.
e. Locate and find coordinates of point D the image of C by the translation $\overrightarrow{A B}$.
f. Deduce the nature of quadrilateral $A B D C$.
g. Let R be the orthogonal projection of C on the x-axis.
i. Prove that the points $D, B, R \& C$ belong to the same circle (c).
ii. Find the radius and the coordinates of J the center of circle (c).
19) Consider the point $R(m+1,2 n-4)$

Find the values of $m \& n$ in each of the following cases;
a. R coincides with the origin O.
b. R is the y-intercept of the straight line $(\Delta): 2 x-3 y=1$.
c. R is the x-intercept of the straight line $(d): x-2 y+1=0$.
d. R belongs to the first quadrant.
e. R belongs to the second quadrant.
20) In a system of axes $x^{\prime} O x, y^{\prime} O y$, consider the point $A(-3 ; 3)$. Let (C) be a circle of center A and tangent to $\left(x x^{\prime}\right)$.
\boldsymbol{a}. What is the relative position of $\left(y^{\prime} y\right)$ with respect to (C) ?
b. Construct the circle $\left(C^{\prime}\right)$, the translate of (C) by the translation of vector $\overrightarrow{A O}$ and determine the tangents through A to $\left(C^{\prime}\right)$.
21) 1. Plot the points $A(1 ; 3), B(5 ; 5) \& N(5 ; 3)$ in a system of orthogonal axes.
2. Compute the coordinates of I the midpoint of $[A B]$.
3. What is the nature of triangle $A B N$?
4. Deduce that points $A, B \& N$ belong to a circle (\boldsymbol{C}), whose center is to be determined.
5. Let (d) be a line of equation: $y=-2 x+15$.
i. Prove that B belongs to (d).
ii. Show that the straight line (d) is tangent to the (\boldsymbol{C}) at point B.
22) Use the following graph to construct the equations of the traced lines:

