- *I* Consider the following table:
 - *a*. Complete on the same sheet the following table.

No.	Straight line	Name the given form	Director \overrightarrow{S} vectors \overrightarrow{S}	Slant m	x -intercept	y -intercept	Normal $\left\{ \begin{array}{c} \rightarrow \\ N \end{array} \right\} $ vectors $\left\{ \begin{array}{c} \rightarrow \\ N \end{array} \right\}$	Write equation in
1.	$(d_1): 3x - 5y + 7 = 0$							Reduced form
2.	$(d_2): \begin{cases} x = -3t + 4 \\ y = 2t - 1 \end{cases}$				·			<u>Cartesian form</u>
3.	$(d_3): y = \frac{-2}{3}x + 1$							Parametric form
4.	$(d_4):3y+9=0$	G		3				Parametric form
5.	$(d_5): 2x - 14 = 0$	2						Parametric form
6.	$(d_6): \frac{3x-1}{2} = \frac{2y+3}{5}$							Reduced form

- **b.** Find the coordinates of E the intersection point between straight lines $(d_1) \& (d_2)$.
- c. Calculate the numerical value of $\alpha \& \beta$ if the points $C(\alpha; 2)$ and $D(1, \beta)$ belong to $(d_2) \& (d_4)$ respectively.

Mathematics W.S.8. Lines in a Plane

- *II* Consider the equations of the two straight lines, $(D_1): -mx + y = 1$ & $(D_2): 2x y = 2 + m$ (where *m* is a parameter)
 - *a*. Calculate *m* so that straight lines $(D_1) \& (D_2)$ are parallel.
 - **b.** If $m \neq 2$, then determine the coordinates of A the intersection point of $(D_1) \& (D_2)$ in terms of m.
- *III* Given the straight lines (D): mx + (2m-7)y = 5m-2.

What is the value of *m* if:

- *a*. Slant of (D) is equal to -1.
- **b.** (D) cuts x axis at point A(-5;0).
- *IV* The following parts are independent:
 - 1. Determine the value of m in each of the following cases:
 - **a.** The vector $\vec{u}(+1;-1)$ is the directing vector of the straight $line(d_m): (m-1)x 2y + m 3 = 0$.
 - **b.** The straight lines (d): (m+4)x (m+1)y + 1 = 0 & $(\Delta): \begin{cases} x = t 1 \\ y = 2t + 3 \end{cases}$ are parallel.
 - 2. Consider the equations $(d_n): (n+3)x + 2(n+1)y 2n + 1 = 0$. Calculate the value of *n* if:
 - *a.* (d_n) Passes through:
 - *i*. Origin.
 - *ii.* The point A(1;1).
 - *iii.* The centroid of triangle ABC, where A(1;1), B(1;2) & C(4;0).
 - b. (d_n) is parallel to the:
 - *i*. Abscissa axis.
 - ii. Ordinate axis.
 - c. (d_n) is perpendicular to a straight line of equation $(\lambda): 3x 2y + 4 = 0$.
- V- Find the equation of straight line (Δ) the perpendicular bisector of [AB] where A(-2;2) & B(-6;5).
 - *i*. Find the measure of [*AB*].
 - *ii.* Write the parametric equations of the straight line (d) passing through point B and parallel to (Δ) .

10th Grade.

Mathematics W.S.8. Lines in a Plane

- VI- For what values of m & n are the straight lines: $(d_1): (2m-2)x + 5my = 15 \& (d_2): mx (2n-1)y = 9$, concurrent.
- *VII* Consider the following equations of straight lines (d): (m+1)x + (m-2)y + m + 3 = 0 and (d'): 2mx + my + m 7 = 0, where *m* is a non-zero real parameter.
 - 1) Show that (d) passes through a fixed point N whose coordinates are to be determined.
 - 2) Prove that straight line (d') has a fixed direction.
 - 3) Compute the value of m, so that straight lines (d) and (d') are parallel.
 - 4) Let $\vec{V}(3; y_o)$ be a vector of the plane. Calculate *m* such that (*d*) admits $\vec{V}(3; y_o)$ as a director vector.
- *VIII* In the plane of orthonormal system (O; i, j), given the points: A(2; -3), B(9; -4) & C(5; m) where m is a real parameter.
 - *i*. Calculate the value of *m* so that the triangle *ABC* is right at *C*.
 - *ii.* Calculate $\cos A\hat{B}C$ for m = 2.
- *IX* Consider points *A*, *B* & *C* of the plane and the straight lines (AC): $\begin{cases} x = 3t 5 \\ y = t + 2 \end{cases}$ such that $t \in IR$

(AB):
$$y = -\frac{3}{2}x + \frac{11}{2}$$
, knowing that (BC) is parallel to (OA)and $y_B = 1$.

- *a*. Trace straight lines (AC) & (AB).
- **b.** Determine a normal vector \vec{N} and a directing vector \vec{V} of straight line(AC).
- c. Calculate the coordinates point of A and the abscissa of point B.
- *d.* i) Find a directing vector of (*OB*). Deduce that (*OB*) & (*AC*) are parallel.ii) What is the nature of quadrilateral *OBCA*? Justify.
- e. Give a Cartesian equation of straight line (BC).
- f. Let (d) be a line of equation 3x 2y = k, $(k \in \Box)$. Determine k for (d) passes through the point C.
- *X* Solve and discuss according to the values of *m*, each of the following:

1)
$$\begin{cases} 4x - my = 6 + m \\ mx - y = 2m \end{cases}$$
 2) $m^2(x - 1) + m(x - 2) = 2x.$

10th Grade.

Mathematics W.S.8. Lines in a Plane