AlMakdi High Schools	Mathematics	10 ${ }^{\text {th }}$-Grade
Name:	"Lines in a Plane"	W.S-8

I- Consider the following table:
a. Complete on the same sheet the following table.

So.	Straight line	Name the given form	$\left.\begin{array}{l} \text { Director } \\ \text { vectors } \end{array}\right\} \vec{S}$	Slant	x-intercept	y-intercept	$\left.\begin{array}{l} \text { Normal } \\ \text { vectors } \end{array}\right\} \vec{N}$	Write equation in
1.	$\left(d_{1}\right): 3 x-5 y+7=0$							Reduced form
2.	$\left(d_{2}\right):\left\{\begin{array}{l}x=-3 t+4 \\ y=2 t-1\end{array}\right.$							Cartesian form
3.	$\left(d_{3}\right): y=\frac{-2}{3} x+1$							Parametric form
4.	$\left(d_{4}\right): 3 y+9=0$							Parametric form
5.	$\left(d_{5}\right): 2 x-14=0$							Parametric form
6.	$\left(d_{6}\right): \frac{3 x-1}{2}=\frac{2 y+3}{5}$							Reduced form

b. Find the coordinates of E the intersection point between straight lines $\left(d_{1}\right) \&\left(d_{2}\right)$.
c. Calculate the numerical value of $\alpha \& \beta$ if the points $C(\alpha ; 2)$ and $D(1, \beta)$ belong to $\left(d_{2}\right) \&\left(d_{4}\right)$ respectively.

II- Consider the equations of the two straight lines, $\left(D_{1}\right):-m x+y=1 \quad \& \quad\left(D_{2}\right): 2 x-y=2+m$ (where m is a parameter)
a. Calculate m so that straight lines $\left(D_{1}\right) \&\left(D_{2}\right)$ are parallel.
b. If $m \neq 2$, then determine the coordinates of A the intersection point of $\left(D_{1}\right) \&\left(D_{2}\right)$ in terms of m.

III- Given the straight lines $(D): m x+(2 m-7) y=5 m-2$.
What is the value of m if:
a. Slant of (D) is equal to -1 .
b. (D) cuts x-axis at point $A(-5 ; 0)$.
$I V$ - The following parts are independent:

1. Determine the value of m in each of the following cases:
\boldsymbol{a}. The vector $\vec{u}(+1 ;-1)$ is the directing vector of the straight line $\left(d_{m}\right):(m-1) x-2 y+m-3=0$.
b. The straight lines $(d):(m+4) x-(m+1) y+1=0 \quad \& \quad(\Delta):\left\{\begin{array}{l}x=t-1 \\ y=2 t+3\end{array}\right.$ are parallel.
2. Consider the equations $\left(d_{n}\right):(n+3) x+2(n+1) y-2 n+1=0$. Calculate the value of $n i f$:
a. $\quad\left(d_{n}\right)$ Passes through:
i. Origin.
ii. The point $A(1 ; 1)$.
iii. The centroid of triangle $A B C$, where $A(1 ; 1), B(1 ; 2) \& C(4 ; 0)$.
b. $\left(d_{n}\right)$ is parallel to the:
i. Abscissa axis.
ii. Ordinate axis.
c. $\left(d_{n}\right)$ is perpendicular to a straight line of equation $(\lambda): 3 x-2 y+4=0$.
\boldsymbol{V} - Find the equation of straight line (Δ) the perpendicular bisector of $[A B]$ where $A(-2 ; 2) \& B(-6 ; 5)$.
i. Find the measure of $[A B]$.
ii. Write the parametric equations of the straight line (d) passing through point B and parallel to (Δ).

VI- For what values of $m \& n$ are the straight lines: $\left(d_{1}\right):(2 m-2) x+5 m y=15 \&\left(d_{2}\right): m x-(2 n-1) y=9$, concurrent.
VII- Consider the following equations of straight lines $(d):(m+1) x+(m-2) y+m+3=0$ and ($\left.d^{\prime}\right): 2 m x+m y+m-7=0$, where m is a non-zero real parameter.

1) Show that (d) passes through a fixed point N whose coordinates are to be determined.
2) Prove that straight line (d ') has a fixed direction.
3) Compute the value of m, so that straight lines (d) and $\left(d^{\prime}\right)$ are parallel.
4) Let $\vec{V}\left(3 ; y_{o}\right)$ be a vector of the plane. Calculate m such that (d) admits $\vec{V}\left(3 ; y_{o}\right)$ as a director vector.

VIII- In the plane of orthonormal system $(O ; \vec{i}, \vec{j})$, given the points: $A(2 ;-3), B(9 ;-4) \& C(5 ; m)$ where m is a real parameter.
i. Calculate the value of m so that the triangle $A B C$ is right at C.
ii. Calculate $\cos A \hat{B} C$ for $m=2$.
$\boldsymbol{I} \boldsymbol{X}$ - Consider points $A, B \& C$ of the plane and the straight lines $(A C):\left\{\begin{array}{l}x=3 t-5 \\ y=t+2\end{array}\right.$ such that $t \in \operatorname{IR}$ $(A B): y=-\frac{3}{2} x+\frac{11}{2}$, knowing that $(B C)$ is parallel to $(O A)$ and $y_{B}=1$.
a. Trace straight lines $(A C) \&(A B)$.
b. Determine a normal vector \vec{N} and a directing vector \vec{V} of straight line $(A C)$.
c. Calculate the coordinates point of A and the abscissa of point B.
d. i) Find a directing vector of $(O B)$. Deduce that $(O B) \&(A C)$ are parallel.
ii) What is the nature of quadrilateral $O B C A$? Justify.
e. Give a Cartesian equation of straight line $(B C)$.
f. Let (d) be a line of equation $3 x-2 y=k,(k \in \square)$. Determine k for (d) passes through the point C.
\boldsymbol{X} - Solve and discuss according to the values of m, each of the following:

1) $\left\{\begin{array}{l}4 x-m y=6+m \\ m x-y=2 m\end{array}\right\}$ 2) $m^{2}(x-1)+m(x-2)=2 x$.
