1- Work out the following problems, the unit of length is centimeter:

A- Compute the exact measure of $N K$, such that triangles $R N K$ and $R S N$ are right at $S$ and $N$ respectively.

| A- Compute the exact measure of |  |
| :--- | :--- | :--- | :--- |
|  | $N K$, such that triangles $R N K$ and |
| $R S N$ are right at $S$ and $N$ |  |
| respectively. |  |

2- Given the triangle $A B C$ such that: $A B=\sqrt{7}+\sqrt{6} \quad B C=\sqrt{14}+2 \sqrt{3} \quad$ and $A C=\frac{1}{\sqrt{7}-\sqrt{6}}$.
i. Rationalize the measure of side $A C$.
ii. Calculate: $A B^{2}, B C^{2} \& A C^{2}$. Deduce the nature of triangle $A B C$ ?

3- Indicate with justification the only correct answer that corresponds for each question.

| No. | Problem | Expected answer |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | A | B | C |
| 1. | In the coded figure below,$A B C D$ | is a <br> Parallelogram | is a Right trapezoid | The four points $A$, $B, C$ and $D$ belong to the same circle of diameter $[A C]$. |
| 2. | Sides $A B=2+\sqrt{3}, B C=\frac{1}{2-\sqrt{3}}$ $\& A C=(1+\sqrt{3})^{2}-(2+\sqrt{3})$ form | A scalene triangle | An isosceles triangle of vertex $B$ | An equilateral triangle. |

4- Consider a circle ( C ) of center O and radius $\mathrm{r}=4 \mathrm{~cm}$. A line ( $(\mathrm{d})$ is drawn through $O$ that intersect (C) at points $\mathrm{A} \& \mathrm{~B}$. Plot M the symmetric of O with respect to A , then trace (MT) the tangent to (C) at T.
a. Find the value of TA.
b. What is the nature of triangle ATO?
c. Deduce the measure of angle $T \hat{M} O=30^{\circ}$.
d. What is the nature of triangle $M T O$ ?

5- Consider the adjacent figure.
a. Device a method to find the exact measures of $[O P] \&[O E]$.
b. Recopy the figure to a real scale. Compare $[O P] \&[E N]$.

c. Let $J$ be the centroid of triangle $O N E$. Prove that $E J N$ is right at $J$.

6- Consider in the adjacent figure the congruent medians $[P Q] \&[N R]$.
a. Reconstruct the figure.
b. Prove that triangles $R J P \& N J Q$ are congruent.
c. Deduce that triangle $M N P$ is isosceles of vertex $M$.

7- Draw a parallelogram $A B C D$, so that $D \hat{A} B=120^{\circ}$.

a. Trace $[D I)$ the internal bisector of $A \hat{D} C$.
b. What is the nature of triangle $D A I$ ? Deduce that $A B=2 A D$.
c. Show that $D \hat{A} C=90^{\circ}$.

8 - $A B C$ is any triangle whose medians $[A M] \&[B N]$ intersect at point $G$.
a. Draw figure, produce points $D \& E$ such that $M D=M G$ and $N E=G N$.
b. Prove that quadrilaterals $B G C D$ and $C G A E$ are parallelograms.
c. Show that $G$ is the midpoint of both sides $[A D] \&[B E]$.

9- The altitudes $[A H]$ and $[B K]$ of triangle $A B C$ intersect at $O$.
a. Plot $D \& E$ the respective midpoints of segments $[O A] \&[O B]$.
b. Prove that triangles $D K O \& E H O$ are isosceles, then deduce that both triangles are equal.

10- Consider a circle $C(O ; r)$ of two perpendicular diameters $[A B] \&[C D]$. Let $M$ be a point taken on the arc $A C$. The line $(M B)$ cuts $[C D]$ at $I$.
a. Show that quadrilateral $O I M A$ is inscribed in a circle $C^{\prime}$ of center $O^{\prime}$ to be determined.
b. Determine the radius of $\left(C^{\prime}\right)$ if the measure of arc $A M=60^{\circ}$.

11- Consider a circle $\left(C_{l}\right)$ of center $O$, and diameter $[A B]$, such that $A B=12 \mathrm{~cm}$. let $E$ be a point of the segment $[O B]$ such that $O E=2 \mathrm{~cm} .\left(C_{2}\right)$ is the circle of diameter $[E B]$ and center $I$. locate point $M$ on $\left(C_{2}\right)$ such that $B M=2 \mathrm{~cm}$.
a. Draw a figure.
b. What is the relative position of circles $\left(C_{1}\right)$ and $\left(C_{2}\right)$ ? Justify.
c. Show that $E M B$ is a semi-equilateral triangle. Deduce the length of segment $[E M]$.
d. The straight line $(B M)$ intersects $\left(C_{I}\right)$ at $P$.
i. Prove that $(M E)$ is parallel to $(A P)$.
ii. Compute $B P$

12- The dimensions of a rectangle are: $r=7+2 \sqrt{5}$ and $n=3+\sqrt{5}$.
a. Compute the expression: $r-n$.
b. Deduce which of the dimensions rorn represents the width of the rectangle.
c. Find the length of the rectangle's diagonal.
d. Calculate the area and the perimeter of the given rectangle.

| ftlastering problems |  |  |  |
| :---: | :---: | :---: | :---: |
| Chapter | Exercises | Pages |  |
| CH-: Right Triangles | Ex: $1(1 \longrightarrow 4)$ | 239 |  |
|  | $3 \rightarrow 7$ | $240 \& 241$ |  |

