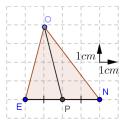
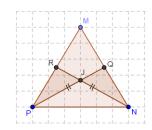


- $\pmb{i}.\;\;$ Rationalize the measure of side AC .
- *ii.* Calculate: AB^2 , BC^2 & AC^2 . Deduce the nature of triangle ABC?


3- Indicate with justification the only correct answer that corresponds for each question.


No.	Problem	Expected answer		
140.		A	В	С
1.	In the coded figure below , <i>ABCD</i> $A = \frac{5 \text{ cm}}{3 \text{ cm}} = \frac{2 \sqrt{5} \text{ cm}}{6 \text{ cm}} = \frac{2 \sqrt{5} \text{ cm}}{100 \text{ cm}}$	is a Parallelogram	is a Right trapezoid	The four points <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> belong to the same circle of diameter [<i>AC</i>].
2.	Sides $AB = 2 + \sqrt{3}$, $BC = \frac{1}{2 - \sqrt{3}}$ & $AC = (1 + \sqrt{3})^2 - (2 + \sqrt{3})$ form	A scalene triangle	An isosceles triangle of vertex <i>B</i>	An equilateral triangle.

- 4- Consider a circle (C) of center O and radius r = 4cm. A line (d) is drawn through O that intersect (C) at points A & B. Plot M the symmetric of O with respect to A, then trace (MT) the tangent to (C) at T.
 - *a*. Find the value of TA.
 - *b*. What is the nature of triangle ATO?
 - c. Deduce the measure of angle $T\hat{M}O = 30^{\circ}$.
 - *d*. What is the nature of triangle *MTO*?
- *5-* Consider the adjacent figure.
 - a. Device a method to find the exact measures of [OP] & [OE].
 - **b.** Recopy the figure to a *real scale*. Compare [OP] & [EN].
 - c. Let J be the centroid of triangle ONE. Prove that EJN is right at J.
- 6- Consider in the adjacent figure the congruent medians [PQ]&[NR].
 - *a*. Reconstruct the figure.
 - **b.** Prove that triangles *RJP* & *NJQ* are congruent.
 - c. Deduce that triangle MNP is isosceles of vertex M.
- 7- Draw a parallelogram *ABCD*, so that $D\hat{A}B = 120^{\circ}$.
 - a. Trace [DI] the internal bisector of $A\hat{D}C$.
 - **b.** What is the nature of triangle *DAI*? Deduce that *AB*=2*AD*.
 - c. Show that $D\hat{A}C = 90^{\circ}$.

8- ABC is any triangle whose medians [AM]&[BN] intersect at point G.

- a. Draw figure, produce points D & E such that MD=MG and NE = GN.
- **b.** Prove that quadrilaterals *BGCD* and *CGAE* are parallelograms.
- c. Show that G is the midpoint of both sides [AD]&[BE].
- **9-** The altitudes [AH] and [BK] of triangle ABC intersect at O.
 - a. Plot D & E the respective midpoints of segments [OA]&[OB].
 - **b.** Prove that triangles *DKO* & *EHO* are isosceles, then deduce that both triangles are equal.

- 10- Consider a circle *C* (*O*; *r*) of two perpendicular diameters [*AB*] & [*CD*]. Let *M* be a point taken on the arc *AC*. The line (*MB*) cuts [*CD*] at *I*.
 - *a*. Show that quadrilateral *OIMA* is inscribed in a circle C' of center O' to be determined.
 - **b.** Determine the radius of (C') if the measure of arc $AM = 60^{\circ}$.
- 11- Consider a circle (C_1) of center *O*, and diameter [AB], such that AB=12cm. let *E* be a point of the segment [OB] such that OE=2cm. (C_2) is the circle of diameter [EB] and center *I*. locate point *M* on (C_2) such that BM=2cm.
 - a. Draw a figure.
 - b. What is the relative position of circles (C_1) and (C_2) ? Justify.
 - c. Show that EMB is a semi-equilateral triangle. Deduce the length of segment [EM].
 - *d*. The straight line (*BM*) intersects (C_1) at *P*.
 - *i*. Prove that (*ME*) is parallel to (*AP*).
 - *ii.* Compute BP
- 12- The dimensions of a rectangle are: $r = 7 + 2\sqrt{5}$ and $n = 3 + \sqrt{5}$.
 - *a*. Compute the expression: r n.
 - **b.** Deduce which of the dimensions *rorn* represents the width of the rectangle.
 - c. Find the length of the rectangle's diagonal.
 - d. Calculate the area and the perimeter of the given rectangle.

Mastering problems					
Chapter	Exercises	Pages			
CH-: Right Triangles	$Ex:1(1\longrightarrow 4)$	239			
	$3 \rightarrow 7$	240 & 241			