А	l- Mahdi High	Mathematics	11 th -Grade				
- N	ame.	Rational functions	V S-5				
5.	unit	1,utonut junctions	VV. J 5				
<i>I</i> - Consider the function <i>f</i> defined on an interval $I = \mathbb{R} - \{2\}$ by $f(x) = \frac{x^2 - 3x + 6}{x - 2}$ and its							
representative curve (C).							
1- Let the straight line (Δ) be the oblique asymptote of (C).							
	b Study the relative	argin fine (Δ) is of equation: $y = x - 1$.					
2. Let the straight line (l) be the vertical asymptote of (C)							
a. Find the equation of (l) .							
b. Prove that $S(x_s; y_s) = (\Delta) \cap (l)$ is the center of symmetry of (C) .							
x(x-4) = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1							
3- Verify that $f'(x) = \frac{f(x-y)}{(x-2)^2}$ and set up the table of variations of f.							
4- Plot S, then construct $(l), (\Delta) \& (C)$.							
5- Discuss according to the values of <i>m</i> the number of solutions of: $f(x) = m(x-2) + 2$							
6- Let g be a function so that $g(x) = \frac{x^2 - 3x + 6}{ x - 2 }$ of representative curve (C_1) .							
Use (C) to construct (C_1) and set up the table of variations of g.							
		$-r^3 + \Gamma r$					
II-	Consider the function	f defined over \mathbb{R} by: $(x) = \frac{-x + 3x}{x^2 + 3}$, and let (C) by	be its representative				
	curve in an orthonorm	nal system ($O; \vec{\iota}; \vec{j}$).					
1)	a. Verify that: $(x) =$	$-x + \frac{8x}{x^2+2}$.					
	b. Show that <i>f</i> is an o	odd function, then deduce the element of symmetry x^{2+3}	y of (C) .				
2)	a. Show that: $f'(x) =$	$=\frac{(x^2+15)(1-x^2)}{(x^2+3)^2}$					
	h Draw the table of	$(\lambda + 3)$					
. .							
3)	Let (d) be the straight	the time of equation: $y = -x$.					
	Show that (d) is an a	symptote to (C) , then study the relative positions of	of (C) and (d) .				
4)	Write an equation of	the tangent (T) to (C) at the point of $abscissa x =$	0.				
5)	a. Calculate $f(-3)$ a	nd determine the coordinates of the points of inter-	section of (C)				
~	with the abscissas	axis.	× /				

- b. Trace(d), (T) & (C).
- 6) Solve graphically: f(x) < 1.

III- Choose with *justification* the only correct answer:

11th-Grade.

Mathematics. W.S-8 Rational functions

No.	Propositions		Expected answers		
			б	С	
1.	$\lim_{x \to 3} \frac{\sqrt{x+1}-2}{x-3} =$	+∞	$-\infty$	$\frac{1}{4}$	
2.	If $f(x) = x^3 + 3x^2 + px$, then f is strictly increasing on \mathbb{R} for	$p \ge 3$	p < 3	-1	
3.	If $f(-x)+f(x)=2$ for every $x \& -x$ belong to D_f then the curve (C_f) admits a center of symmetry:	O(0,0)	I(0,1)	J(1,0)	
4.	The function f defined over [-2,1] by $f(x)\frac{ x }{x^2+4}$ is:	Odd	Even	Neither even nor odd	

IV- Let *f* be a function defined over \mathbb{R} by: $f(x) = \frac{x^3 - 2x^2 + 5x - 2}{x^2 + 1}$.

Designate by (C) the representative curve of f in an orthonormal system $(O; \vec{i}, \vec{j})$.

- 1) Express f(x) in form of $ax + b + \frac{cx}{x^2 + 1}$, where a, b & c are non-zero integers.
- 2) Form this part on take a = 1, b = -2 & c = 4
 - a. Express f(x) in the new form, then determine: $\lim_{x \to +\infty} f(x)$ and $\lim_{x \to -\infty} f(x)$.
 - b. Show that the straight-line (*l*) of equation y = x 2 is an asymptote to(*C*).
 - c. Study the relative position of (C) and (l).
- 3) Given that (C)cuts the x axis at a point B of abscissa $\alpha \in]0; 0.5[$
 - a. Prove that: $f'(x) = \frac{x^4 2x^2 + 5}{(x^2 + 1)^2}$, and then set up the table of variations of f.
 - b. Verify that B is unique, then study the sign of f(x) in terms of α .
 - c. Prove that I(0;-2) is a center of symmetry for (C).
- 4) Determine the coordinates of the points *A* & *B* of (*C*), where the tangent is parallel to the oblique asymptote (*l*) and $x_A < x_B$.
- 5) Plot the points *I*, *A* & *B*, and trace the curves (l), the tangents at *A* & *B* and (C).
- 6) Solve graphically: x 1 < f(x) < x.
- 7) Deduce from (*C*) the curve (*C*') representing the function *h* defined by h(x) = f(|x|).

