I- Consider the vector $a(-2 ; 1)$.
a. Find the coordinates of the vector \vec{b}, where $\vec{a} \perp \vec{b}$ and given that $\|\vec{b}\|=10 \mathrm{~cm}$.
b. Find a unit vector \vec{c} collinear with \vec{a}, and of the same sense as \vec{a}.

II- Consider a triangle $A B C$ so that $A B=2, A C=4 \& B C=3$. Calculate length of median $A I$.
III- Calculate the following scalar products:
a) $\overrightarrow{D A} \cdot \overrightarrow{D B}$
b) $\overrightarrow{D A} \cdot \overrightarrow{B F}$
c) $\overrightarrow{E A} \cdot \overrightarrow{A C}$
d) $\overrightarrow{E A} \cdot \overrightarrow{E B}$
e) $\overrightarrow{F C} \cdot \overrightarrow{D A} \quad$ f) $\overrightarrow{F C} \cdot \overrightarrow{F D}$
g) $\overrightarrow{E C} \cdot \overrightarrow{E F}$.

IV- Consider the points $A(1 ; 2), B(-1 ; 3), M(x ; y) \& N(m ; 0)$ and vectors $\vec{S}(-3,1) \& \vec{T}(1,2)$
\boldsymbol{a}. Determine the relation that exists between the coordinates of point $M(x ; y)$, so that points $M, A, \& B$ are collinear.
b. Determine the value of m in the following cases:

1- $\vec{v}(3,5) \& \vec{u}(m-2, m+3)$ are orthogonal.
2- $\vec{S} \& \vec{W}$ are orthogonal where $\vec{W}=\vec{S}+m \vec{T}$.
3- $\cos (\overrightarrow{A B}, \overrightarrow{A N})=\frac{\sqrt{2}}{2}$.
V- Consider a square $A B C D$ with side equal to 4 cm .
Let $E \& F$ be the respective midpoints of sides $A B \& B C$.
i. Calculate $\overrightarrow{E C} \cdot \overrightarrow{E D}$, and then deduce the value of $\cos \alpha$.
ii. Calculate $\overrightarrow{D E} \cdot \overrightarrow{D F}$, and then deduce the value of $\cos \beta$.
iii. Show that $(D E)$ is perpendicular to $(A F)$.

VI- Consider in an orthonormal system of axes (O, \vec{i}, \vec{j}) the two vectors $\vec{a}(x ; 2 x-1), \vec{b}(x ; 2)$ and the two lines $(D): 3 x-y-2=0$ and $\left(D_{1}\right): x-3 y-m=0$ where $x \& m \in \mathfrak{R}$
1- a. Calculate $f(x)=\vec{a} \cdot \vec{b}$.
b. Find the value of $f(-1)$.

2- a. Determine the directing vectors of equations of lines representing (D) and x-axis.
b. Calculate the acute angle between the straight lines $(D) \& x$-axis.

3- a. Calculate the distance from a point $I(-1 ; 1)$ to straight line (D).
b. Determine the value of m such that point I belongs to one of the bisectors of the angle formed between lines $(D) \&\left(D_{1}\right)$.
4- Find coordinates of the point I^{\prime}, the symmetric of I w.r.t straight line (D).

VII- Find two points on x-axis at a distance equal to $\sqrt{2}$ from the straight line : $x-y-2=0$.
VIII- Two vectors $\vec{u} \& \vec{v}$ are given such that: $\|\vec{u}\|=2$ units, $\|\vec{v}\|=1$ unit \& $(\vec{u}, \vec{v})=\frac{\pi}{3}$.
a. Construct triangle $A B C$ so that: $\overrightarrow{A B}=\vec{u} \& \overrightarrow{A C}=\vec{v}$.
b. Calculate $\|\vec{u}+\vec{v}\| \&\|\vec{u}-\vec{v}\|$.
$\boldsymbol{I} \boldsymbol{X}$ - The adjacent figure represents an isosceles triangle $B C E$ and a rectangle $A B C D$ of dimensions $A B=5 \mathrm{~cm} \& A D=3 \mathrm{~cm}$.

1- Calculate the following scalar products:
a. $\overrightarrow{A B} \cdot I \vec{C}$
b. $\overrightarrow{A C} \cdot \overrightarrow{I C}$
c. $\overrightarrow{A B} \cdot \overrightarrow{D E} \quad$ d. $\overrightarrow{A C} \cdot \overrightarrow{D E}$

2- Consider the system $(A ; \vec{i}, \vec{j})$ with $\vec{i}=\frac{A B}{5} \& \vec{j}=\frac{A D}{3}$.
a. Determine the coordinates of the points $B, C, D, E \& I$.
b. Find again the scalar products you have calculated before.
3- Let $M(m ; 2) \& N(x ; y)$ be any two points in the given system.
\boldsymbol{a}. Determine the abscissa of M so that $A \hat{M} B=\frac{\pi}{2}$.
b. Write the equation of (d), that verifies the set of points $N(x ; y)$, such that: $\overrightarrow{B N} \cdot \overrightarrow{C E}=0$.
c. Verify that, (d) represents the perpendicular bisector of $[C E]$.
X - Given the two straight lines $(D): 2 x-y-1=0 \&\left(D^{\prime}\right): x-2 y-2=0$.
a. Find the equations of the bisector straight lines of the angles between lines $(D) \&\left(D^{\prime}\right)$.
b. Specify the number and position of points, $M(x ; y)$, that are equidistant from both straight lines $(D) \&\left(D^{\prime}\right)$. Give two ordered pairs for M.
\boldsymbol{c}. Find the points of the straight line $(L):\left\{\begin{array}{l}x=3 m+1 \\ y=m+2\end{array}\right.$ which are equidistant from the two straight lines $(D) \&\left(D^{\prime}\right)$.
XI- Let $M(x ; y)$ be any point on a circle (c) of diameter $[A B]$ where $A(-3 ; 1) \& B(5 ; 3)$
a. Determine the value of: $\overrightarrow{A M} \cdot \overrightarrow{B M}$.
i. Without calculation. Justify your answer.
ii. In terms of $x \& y$.
b. What does the expression found represent? Explain.
c. Determine the center and radius of (c) in two different ways.

XII- Match each expression(s) with the most convenient figure(s): Expressions:

1) $\overrightarrow{A B} \cdot \overrightarrow{A C}=\|\overrightarrow{A B}\| \times\|\overrightarrow{A C}\|$
2) $\overrightarrow{B A} \cdot \overrightarrow{C A}=\overrightarrow{A B} \cdot \overrightarrow{A C}$
3) $\overrightarrow{A B} \cdot \overrightarrow{A C}=0$.
4) $\overrightarrow{A B} \cdot \overrightarrow{C B}=\frac{1}{2}\|A \overrightarrow{A B}\|^{2}$
5) $\overrightarrow{A B} \cdot \overrightarrow{A C}=-\|\overrightarrow{A C}\|^{2}$
6) $\overrightarrow{A B} \cdot \overrightarrow{A C}=-\|A \overrightarrow{A B}\| \times\|\overrightarrow{A C}\|$.
7) $\overrightarrow{A B} \cdot \overrightarrow{B C}=-\|\overrightarrow{C B}\|^{2}$
8) $\overrightarrow{A B} \cdot \overrightarrow{A C}=\overrightarrow{A B} \cdot \overrightarrow{C A}$
9) $\overrightarrow{A B} \cdot \overrightarrow{A C}=\frac{1}{2}\|\overrightarrow{A B}\|^{2}$.
10) $\overrightarrow{A B} \cdot \overrightarrow{A C}=-\|\overrightarrow{A C}\|^{2}$
11) $\overrightarrow{A B} \cdot \overrightarrow{A C}=\|A \overrightarrow{A B}\|^{2}$
12) $\|\overrightarrow{A B}+\overrightarrow{B C}\|=\|\overrightarrow{A B}\|+\|\overrightarrow{B C}\|$.
13) $\overrightarrow{A B} \cdot \overrightarrow{A C}=\frac{1}{2}\|A C\|^{2}$
14) $\overrightarrow{B A} \cdot \overrightarrow{C B}=0$.

figures		
Fig-1: Exp: \qquad	Fig-2: $\mathfrak{E x p}:$	Fig-3: $\mathfrak{E x p}$
Fig-4: Exp: \qquad	Fig-5: Exp:	Fig-6: Exp:

Allastering problemss		
Chapter	Exercises	Pages
CH-11: Scalar product	$7,8 \& 9$	233
	$14 \& 15$	235
CH-12: of a scalar product	$1 \longrightarrow 4$	250
	$5 \& 6$	251
	$7,9,11,12 \& 15$	$251,253,254 \& 255$

