Lycée Des Arts
Name:

Mathematics
$9^{\text {th }}$-Grade
"Vector Translations"

1- Answer by True or False, and correct false statements:
a. A straight line admits one director vector only.
b. There is only one vector parallel to $\vec{V}(2,1)$.
c. If $\overrightarrow{A B}+\overrightarrow{B C}=\overrightarrow{A C}$ then it is necessary that the points $A, B \& C$ are collinear.
d. If $A B C D$ is a parallelogram, then $\overrightarrow{A B}=\overrightarrow{C D}$
\boldsymbol{e}. If I is the midpoint of $[A B]$ and M is any point in the plane, then $\overrightarrow{M A}+\overrightarrow{M B}=2 \overrightarrow{M I}$
2- For each statement, indicate with justification the only correct answer. (3-pts)

\mathcal{N} o.	Statements		Proposed answers										
		a	6	c									
1.	The vector $\vec{u}(3,4)$ is parallel to the straight line (d) of equation,	$3 x+4 y-1=0$	$4 x+3 y-1=0$	$4 x-3 y-1=0$									
2.	The vector $\vec{u}(2,3)$ is collinear with	$\vec{v}(-4,-6)$	$\vec{v}(-4,6)$	$\vec{v}(4,-6)$									
3.	A zero vector is a vector with zero magnitude and	No direction No sense	Infinite directions No sense	No direction Infinite senses									
4.	If $\vec{v}=\vec{u}+\vec{v}$, then $\\|\vec{w}\\|=$	$\\|\vec{u}\\|+\\|\vec{v}\\|$	$\\|\vec{u}+\vec{v}\\|$	$\sqrt{\vec{u}+\vec{v}}$									

3- Given that triangle $Q M N$ is isosceles of principal vertex Q.
a. Construct the point I such that: $\overrightarrow{Q I}=\overrightarrow{Q M}+\overrightarrow{Q N}$.
b. Prove that point I is the image of the point N, by a translation vector to be determined.
c. Determine the nature of quadrilateral QMIN. Justify.
d. Let J and K be the respective symmetries of I with respect to M and N.
Show that Q is the midpoint of $[J K]$.(Use vectors)
4- Use the adjacent figure to complete and justify the following equalities:

1. $\overrightarrow{A B}+\overrightarrow{B I}+\overrightarrow{I C}=\ldots$.
2. $\overrightarrow{A B}+\overrightarrow{A C}=\ldots$.
$3 . \overrightarrow{I B}+\ldots . \overrightarrow{0}$
3. $\overrightarrow{A B}+\overrightarrow{I C}=\overrightarrow{A \ldots}$.

5-Consider the points $A(-1 ; 3), B(2 ; 1), C(1 ;-1)$, and the vector $\vec{v}(a-1 ; b+2)$. Calculate the numerical value of:
a. $a \& b$, if $\vec{v}=2 \overrightarrow{A B}-\overrightarrow{B C}$.
b. b so that \vec{v} is parallel to the ordinate axis.

6- In the plane of orthonormal system of axes x^{\prime} Oxand $y^{\prime} O y$, plot the points: $A(-2 ; 4), B(-5 ;-2) \& C(0 ; 3)$.
a. Determine both graphically and analytically the coordinates of $\overrightarrow{A B}$.
b. Let E be the translate of C by the translation of $\overrightarrow{A B}$.
i. Plot then find the coordinates of the point E.
ii. Calculate coordinates of vectors: $\overrightarrow{A E} \& \overrightarrow{A C}$, then deduce that: $\overrightarrow{A E}=\overrightarrow{A B}+\overrightarrow{A C}$.
c. What is the nature of quadrilateral $A B E C$? Justify your answer.

7- In the plane of orthonormal system of axes x'Oxand y'Oy, place the points: $A(1 ;-1), B(3 ; 1) \& C(-1 ; 3)$.
a. Determine the nature of triangle $A B C$.
b. Construct the point D so that: $\overrightarrow{B D}=\overrightarrow{B A}+\overrightarrow{B C}$, then determine its coordinates.
c. Show that $(B D)$ is parallel to $x^{\prime} O x$, then compute the area of triangle $B C D$.

8 - Consider the point M, the midpoint of $[B C]$, in triangle $A B C$.
a. If G is the centroid of triangle $A B C$ then,
i. Prove that: $\overrightarrow{G B}+\overrightarrow{G C}=2 \overrightarrow{G M}$.
ii. Deduce that: $\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}=\overrightarrow{0}$.
b. Let I be any point in the given plane. Prove that $\overrightarrow{I A}+\overrightarrow{I B}+\overrightarrow{I C}=3 \overrightarrow{I G}$.

9- Let M and N be the respective midpoints of $[B C] \&[A M]$ in triangle $A B C$. ($B N$) cuts $[A C]$ at a point I, the parallel drawn through A to $(B N)$ cuts $(C B)$ at a point E.
a. Draw a figure.
b. Prove that B is the midpoint of $[E M]$.
c. Use Thales' property to prove that: $\frac{A I}{A C}=\frac{1}{3}$.
d. Show that: $\overrightarrow{A E}+\overrightarrow{M C}=\overrightarrow{A B}$.

10- Given a triangle $A B C$.
a. Plot the points M and N so that: $\overrightarrow{A M}=\overrightarrow{B C}$ and $\overrightarrow{N B}=\overrightarrow{A C}$.
b. Show that $\overrightarrow{N A}=\overrightarrow{B C}$.
c. Deduce that A is the midpoint of $[M N]$.

11- Given a circle $C(O ; R c m)$ and diameter $[B C]$, let A be a point of (C) so that $C A=R \mathrm{~cm}$.

1) \boldsymbol{a} - Draw a figure then locate D, the image of B by the translation of $\overrightarrow{A C}$.
\boldsymbol{b} - Determine the nature of quadrilateral $A B D C$? Justify your answer.
2) i - Locate the point M so that; $\overrightarrow{C M}=\overrightarrow{C O}+\overrightarrow{C A}$.
ii- Locate the point N so that; $\overrightarrow{O N}=\overrightarrow{O A}+\overrightarrow{O C}$.
iii- Deduce that $\overrightarrow{D N}+\overrightarrow{C A}=3 \overrightarrow{O A}$.
3) Prove that A is the midpoint of $[M N]$.

12- Let I be a point on a circle (c) with diameter $[E F]$. And designate by J the symmetric of E with respect to I.
a. Prove that triangle EFJ is isosceles.
b. Let K be the image of I by the translation of $\overrightarrow{E F}$. Compare the vectors $\overrightarrow{I J} \& \overrightarrow{F K}$.
c. Deduce the nature of quadrilateral $I F K J$.
d. Construct G such that $\overrightarrow{E G}=\overrightarrow{F E}+\overrightarrow{F K}$.
\boldsymbol{e}. What does point I represent with respect to $[G K]$? Justify your answer.
13- Locate the missing points on the adjacent grid so that:
a) $\overrightarrow{A R}=\overrightarrow{B A}+\overrightarrow{B C}$.
b) $\overrightarrow{B N}=-\overrightarrow{C A}$.
c) $\overrightarrow{A J}=\overrightarrow{A N}+\overrightarrow{A C}$.
d) $\overrightarrow{A I}+\overrightarrow{B I}=\overrightarrow{0}$.

14- $A B C D E F$ is a regular hexagon with center O.
i. Correct false statements if there is any:

	True	False	Correction
$\overrightarrow{A F}=\overrightarrow{B O}$			
$\overrightarrow{O A}=\overrightarrow{O B}$			
$\overrightarrow{A F}+\overrightarrow{F O}=\overrightarrow{B C}$			
$\overrightarrow{A B}+\overrightarrow{B C}=\overrightarrow{F D}$			

ii. Complete the following:
a. $\overrightarrow{F E}=\overrightarrow{A_{1} \ldots}=\overrightarrow{O \ldots}=\overrightarrow{B_{\ldots} \ldots}$.
$\overrightarrow{O E}=\vec{O} \ldots+\vec{D}$.
$\overrightarrow{O F}+\overrightarrow{O D}=\overrightarrow{. . O}$.

b. The translate of B by the translation with vector $(\overrightarrow{A F}+\overrightarrow{F E})$ is the point $\ldots \ldots$
c. F is the translate of O by the translation with vector... \vec{A}.

15- Consider the parallelogram $A B C D$.
a. Construct the points E, F, G and H defined by:

$$
\overrightarrow{D E}=\frac{5}{4} \overrightarrow{D A} ; \overrightarrow{A F}=\frac{6}{5} \overrightarrow{A B} ; \overrightarrow{B G}=\frac{5}{4} \overrightarrow{B C} ; \overrightarrow{C H}=\frac{6}{5} \overrightarrow{C D} .
$$

b. Express the following vectors as a linear combination of $\overrightarrow{A B} \& \overrightarrow{A D}$.

$$
\text { i. } \overrightarrow{E F} . \quad \text { ii. } \overrightarrow{H G} .
$$

c. Deduce the nature of quadrilateral $E F G H$.

16- Consider the parallelogram $A B C D$, so that $A B=6 \mathrm{~cm} \& B C=2 \mathrm{~cm}$. I and J are two points of $[A B]$ so that $A I=I J=2 \mathrm{~cm}$.
K and L are two points of [CD] so that $D L=L K=2 \mathrm{~cm}$.

Indicate the correct answer(s).

	a	b	c	d
$\overrightarrow{A I}=\ldots$.	$\overrightarrow{K C}$	$\overrightarrow{A D}$	$\overrightarrow{D L}$	$\overrightarrow{J B}$
$\overrightarrow{A L}=\ldots$	$\overrightarrow{A I}+\overrightarrow{J C}$	$\overrightarrow{D A}+\overrightarrow{D L}$	$\overrightarrow{I J}+\overrightarrow{J K}$	$\overrightarrow{A D}+\overrightarrow{D L}$
$\overrightarrow{A J}=\ldots$	$\overrightarrow{K B}+\overrightarrow{A L}$	$\overrightarrow{I J}+\overrightarrow{A L}$	$\overrightarrow{A I}+\overrightarrow{D L}$	$2 \overrightarrow{L C}$
$\overrightarrow{I L}=\ldots$	$\overrightarrow{D A}$	$\overrightarrow{B C}$	$\overrightarrow{J C}$	$\overrightarrow{I K}$

17- In an orthonomral system of axes x 'ox, y 'oy, consider the points $A(5 ; 3), C(-3 ;-3)$ and the circle (n) of diameter $[A C]$ and center I.

1) Plot the points \boldsymbol{A} and \boldsymbol{C}, and draw the circle (n).
2) Determine the coordinates of the point \boldsymbol{I} and the radius of the circle (n). (1pt)
3) Consider the point $\boldsymbol{B}(-3 ; 3)$
\boldsymbol{i}. Prove that the straight lines $(\boldsymbol{A B}) \&(\boldsymbol{C B})$ are parallel to the coordinate axes, then find their equations.
ii. Deduce the nature of triangle $A B C$.
iii. Show that \boldsymbol{B} belongs to the circle (n).
4) Determine the equation of the tangent (\boldsymbol{d}) to the circle (n) at \boldsymbol{B}.
5) Let \boldsymbol{S} be the translate of \boldsymbol{I} by the vector translation $\overrightarrow{B I}$.
i. Construct \boldsymbol{S} then calculate its coordinates.
ii. Deduce the nature of the quadrilateral $\boldsymbol{A B C S}$.
6) Find the equation of (d^{\prime}) the translate of (d) under the translation with vector $\overrightarrow{\mathrm{BC}}$.

18- In the reference frame $x^{\prime} O x, y^{\prime} O y$ consider the points $R(2,3), S(c-2,3) \& N(-1,2)$, the vector $\vec{u}(2-a, b+1)$ the family of the straight lines: $\left(d_{m}\right): x-2 m x+y=m+1$

1. Determine the numerical values of $a \& b$, so that $\vec{u}=2 \overrightarrow{R N}-3 \overrightarrow{N S}$ where, $c=2$.
2. Determine the locus of the point S as c varies.
3. Determine the real value of m, if $\left(d_{m}\right)$:
a. Passes through the point $A(-2,1)$.
b. Is parallel to straight line $(l):-3 x+y+1=0$
4. Find the equation of the straight line (Δ) the image of $(R N)$ by the translation of $\overrightarrow{N A}$.
