- *1* Answer by True or False, and correct false statements:
 - *a*. A straight line admits one director vector only.
 - **b.** There is only one vector parallel to $\vec{V}(2,1)$.
 - c. If $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ then it is necessary that the points A, B & C are collinear.
 - *d.* If *ABCD* is a parallelogram, then $\overrightarrow{AB} = \overrightarrow{CD}$

e. If *I* is the midpoint of [AB] and *M* is any point in the plane, then MA + MB = 2MI2- For each statement, indicate with *justification* the *only* correct answer. (3-*pts*)

No.	Statements	Proposed answers		
		a	б	С
1.	The vector $\vec{u}(3,4)$ is parallel to the straight line (d) of equation,	3x + 4y - 1 = 0	4x + 3y - 1 = 0	4x - 3y - 1 = 0
2.	The vector $\vec{u}(2,3)$ is collinear with	$\overrightarrow{v}(-4,-6)$	$\overrightarrow{v}(-4,6)$	$\overrightarrow{v}(4,-6)$
3.	A zero vector is a vector with zero magnitude and	No direction No sense	Infinite directions No sense	No direction Infinite senses
4.	If $\vec{w} = \vec{u} + \vec{v}$, then $\left\ \vec{w} \right\ =$	$\begin{vmatrix} \vec{u} \end{vmatrix} + \begin{vmatrix} \vec{v} \end{vmatrix}$	$\begin{vmatrix} \overrightarrow{u} + \overrightarrow{v} \\ \overrightarrow{u} + \overrightarrow{v} \end{vmatrix}$	$\sqrt{\overrightarrow{u+v}}$

- 3- Given that triangle QMN is isosceles of principal vertex Q.
 - **a.** Construct the point *I* such that: $\vec{QI} = \vec{QM} + \vec{QN}$.
 - **b.** Prove that point *I* is the image of the point *N*, by a translation vector to be determined.
 - c. Determine the nature of quadrilateral QMIN. Justify.
 - *d*. Let *J* and *K* be the respective symmetries of *I* with respect to *M* and *N*. Show that *Q* is the midpoint of [*JK*].(Use vectors)
- 4- Use the adjacent figure to complete and *justify* the following equalities:

- 5- Consider the points A(-1;3), B(2;1), C(1;-1), and the vector v(a-1;b+2). Calculate the numerical value of:
 - **a.** a & b, if $\vec{v} = 2\vec{AB} \vec{BC}$.
 - **b.** b so that \vec{v} is parallel to the ordinate axis.

- 6- In the plane of orthonormal system of axes x'Ox and y'Oy, plot the points: A(-2;4), B(-5;-2) & C(0;3).
 - a. Determine both graphically and analytically the coordinates of AB.
 - **b.** Let E be the translate of C by the translation of AB.
 - *i*. Plot then find the coordinates of the point *E*.
 - *ii.* Calculate coordinates of vectors: $\vec{AE} \& \vec{AC}$, then deduce that: $\vec{AE} = \vec{AB} + \vec{AC}$.
 - c. What is the nature of quadrilateral *ABEC*? Justify your answer.
- 7- In the plane of orthonormal system of axes x'Ox and y'Oy, place the points: A(1;-1), B(3;1) & C(-1;3).
 - *a*. Determine the nature of triangle *ABC*.
 - **b.** Construct the point D so that: $\overrightarrow{BD} = \overrightarrow{BA} + \overrightarrow{BC}$, then determine its coordinates.
 - c. Show that (BD) is parallel to x'Ox, then compute the area of triangle BCD.
- 8- Consider the point *M*, the midpoint of [*BC*], in triangle *ABC*.
 - a. If G is the centroid of triangle ABC then,
 - *i.* Prove that: $\overrightarrow{GB} + \overrightarrow{GC} = 2\overrightarrow{GM}$.
 - *ii.* Deduce that: $\vec{GA} + \vec{GB} + \vec{GC} = \vec{0}$.
 - **b.** Let *I* be any point in the given plane. Prove that $\vec{IA} + \vec{IB} + \vec{IC} = 3\vec{IG}$.
- 9- Let *M* and *N* be the respective midpoints of [*BC*] & [*AM*] in triangle *ABC*. (*BN*) cuts [*AC*] at a point *I*, the parallel drawn through *A* to (*BN*) cuts (*CB*) at a point *E*.
 - *a*. Draw a figure.
 - **b.** Prove that *B* is the midpoint of [*EM*].
 - c. Use Thales' property to prove that: $\frac{AI}{AC} = \frac{1}{3}$.
 - *d.* Show that: $\overrightarrow{AE} + \overrightarrow{MC} = \overrightarrow{AB}$.
- *10-* Given a triangle *ABC*.
 - *a*. Plot the points *M* and *N* so that: $\vec{AM} = \vec{BC}$ and $\vec{NB} = \vec{AC}$.
 - **b.** Show that $\vec{NA} = \vec{BC}$.

c. Deduce that A is the midpoint of [MN].

- 11- Given a circle C(O; R cm) and diameter [BC], let A be a point of (C) so that CA = R cm.
 - *a* Draw a figure then locate *D*, the image of *B* by the translation of *AC*.
 b Determine the nature of quadrilateral *ABDC*? Justify your answer.
 - 2) *i* Locate the point *M* so that; $\vec{CM} = \vec{CO} + \vec{CA}$.
 - *ü*-Locate the point N so that; $\vec{ON} = \vec{OA} + \vec{OC}$.
 - *iii* Deduce that $\vec{DN} + \vec{CA} = 3\vec{OA}$.
 - 3) Prove that *A* is the midpoint of [*MN*].

- 12- Let *I* be a point on a circle (*c*) with diameter [*EF*]. And designate by *J* the symmetric of *E* with respect to *I*.
 - *a*. Prove that triangle *EFJ* is isosceles.
 - **b.** Let *K* be the image of *I* by the translation of \vec{EF} . Compare the vectors $\vec{IJ} \& \vec{FK}$.
 - *c*. Deduce the nature of quadrilateral *IFKJ*.
 - **d.** Construct G such that $\vec{EG} = \vec{FE} + \vec{FK}$.
 - e. What does point *I* represent with respect to [*GK*]? Justify your answer.
- 13- Locate the missing points on the adjacent grid so that:

14- ABCDEF is a regular hexagon with center *O*.

i. Correct false statements if there is any:

	True	False	Correction		
$\overrightarrow{AF} = \overrightarrow{BO}$					
$\overrightarrow{OA} = \overrightarrow{OB}$					
$\vec{AF} + \vec{FO} = \vec{BC}$					
$\vec{AB} + \vec{BC} = \vec{FD}$				BC	

ii. Complete the following:

a.
$$\overrightarrow{FE} = \overrightarrow{A...} = \overrightarrow{O...} = \overrightarrow{B...}$$
 $\overrightarrow{OE} = \overrightarrow{O...} + ...\overrightarrow{D}$.

 $\overrightarrow{OF} + \overrightarrow{OD} = ...\overrightarrow{O}$.

b. The translate of *B* by the translation with vector $(\vec{AF} + \vec{FE})$ is the point

c. F is the translate of O by the translation with vector...A.

- 15- Consider the parallelogram *ABCD*.
 - *a*. Construct the points *E*, *F*, *G* and *H* defined by:

$$\vec{DE} = \frac{5}{4}\vec{DA}; \quad \vec{AF} = \frac{6}{5}\vec{AB}; \quad \vec{BG} = \frac{5}{4}\vec{BC}; \quad \vec{CH} = \frac{6}{5}\vec{CD}.$$

b. Express the following vectors as a linear combination of $\overrightarrow{AB} \& \overrightarrow{AD}$.

i. \vec{EF} . *ii*. \vec{HG} . *c*. Deduce the nature of quadrilateral *EFGH*.

16- Consider the parallelogram ABCD, so that AB = 6cm & BC = 2cm. *I* and *J* are two points of [*AB*] so that AI = IJ = 2cm. *K* and *L* are two points of [*CD*] so that

K and *L* are two points of [CD] so that DL = LK = 2cm.

Indicate the correct answer(s).

	а	b	С	d
$\overrightarrow{AI} = \dots$	\overrightarrow{KC}	\overrightarrow{AD}	\overrightarrow{DL}	\overrightarrow{JB}
$\overrightarrow{AL} = \dots$	$\overrightarrow{AI} + \overrightarrow{JC}$	$\overrightarrow{DA} + \overrightarrow{DL}$	$\vec{IJ} + \vec{JK}$	$\overrightarrow{AD} + \overrightarrow{DL}$
$\overrightarrow{AJ} = \dots$	$\vec{KB} + \vec{AL}$	$\overrightarrow{IJ} + \overrightarrow{AL}$	$\vec{AI} + \vec{DL}$	$2\vec{LC}$
$\overrightarrow{IL} = \dots$	$\stackrel{\rightarrow}{DA}$	\overrightarrow{BC}	\vec{JC}	\vec{IK}

- 17- In an orthonomral system of axes *x'ox*, *y'oy*, consider the points *A*(5;3), *C*(-3;-3) and the circle (*n*) of diameter [*AC*] and center *I*.
 - 1) Plot the points A and C, and draw the circle (n).
 - 2) Determine the coordinates of the point I and the radius of the circle (n). (1pt)
 - **3**) Consider the point B(-3;3)
 - *i*. Prove that the straight lines (*AB*) & (*CB*) are parallel to the coordinate axes, then find their equations.
 - *ii.* Deduce the nature of triangle *ABC*.
 - *iii.* Show that B belongs to the circle (n).
 - 4) Determine the equation of the tangent (d) to the circle (n) at **B**.
 - 5) Let S be the translate of I by the vector translation \vec{BI} .
 - *i*. Construct *S* then calculate its coordinates.
 - *ii.* Deduce the nature of the quadrilateral *ABCS*.
 - 6) Find the equation of (d') the translate of (d) under the translation with vector \overrightarrow{BC} .
- 18- In the reference frame x'Ox , y'Oy consider the points R(2,3), S(c-2,3) & N(-1,2), the vector $\vec{u}(2-a,b+1)$ the family of the straight lines: $(d_m): x 2mx + y = m+1$
 - 1. Determine the numerical values of a & b, so that $\vec{u} = 2\vec{RN} 3\vec{NS}$ where, c = 2.
 - 2. Determine the locus of the point S as c varies.
 - 3. Determine the real value of m, if (d_m) :
 - a. Passes through the point A(-2,1).
 - b. Is parallel to straight line (l): -3x + y + 1 = 0
 - 4. Find the equation of the straight line (Δ) the image of (*RN*) by the translation of \overrightarrow{NA} .